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Abstract. We describe the irreducible components of the jet schemes with
origin in the singular locus of a two-dimensional quasi-ordinary hypersurface
singularity. A weighted graph is associated with these components and with
their embedding dimensions and their codimensions in the jet schemes of the
ambient space. We prove that the data of this weighted graph is equivalent
to the data of the topological type of the singularity. We also determine a
component of the jet schemes (equivalent to a divisorial valuation on A3),
that computes the log canonical threshold of the singularity embedded in A3.
This provides us with pairs X ⊂ A3 whose log canonical thresholds are not
computed by monomial divisorial valuations. Note that for a pair C ⊂ A2,
where C is a plane curve, the log canonical threshold is always computed by
a monomial divisorial valuation (in suitable coordinates of A2).

1. Introduction

By de�nition, a complex analytic quasi-ordinary singularity (X, 0) of dimen-
sion d comes with a �nite projection p : X −→ Ad, whose discriminant is a normal
crossing divisor. These singularities appear in the Jungian approach to resolution
of singularities (see [31]). We are interested in irreducible quasi-ordinary surfaces
X, de�ned by f ∈ C{x1, x2}[z]. Thanks to the Abhyankar-Jung theorem, we know
that a hypersurface of this type is parametrized in the form xi = xi for i = 1, 2

and z = ζ(x1, x2), where ζ is an element in C{x1/n
1 , x

1/n
2 }, n being the degree of f

as a polynomial in z. Moreover, some special exponents (called the characteristic
exponents) which belong to the support of the series ζ, are complete invariants
of the topological type of the singularity (see [15]). In particular, they determine
invariants which come from resolution of singularities, like the log canonical thresh-
old or the Motivic zeta functions ([3], [9], [8], [18]). They also give insights about
the construction of a resolution of singularities ([6], [7], [34], [17]).

Our aim is to construct some comparable complete invariants for all types of
singularities. Since in general, we cannot have a parametrization, we search for
such invariants in the jet schemes. For m ∈ N, the m-th jet scheme, denoted by
Xm, is a scheme that parametrizes morphisms Spec C[t]/(tm+1) −→ X. Intuitively
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we can think of it as a scheme parametrizing arcs in an ambient space, which have
contact at least m+ 1 with X. We know already that some invariants which come
from resolution of singularities are encoded in the jet schemes ([29], [13]).

We want to extract from the jet schemes information about the singularity,
which can be expressed in terms of invariants of resolutions of singularities. For
speci�c types of singularities, the knowledge of the irreducible components of the
jet schemes Xm of a singular variety X, together with some of their invariants,
such as dimension or embedding dimension, allows us to determine deep invariants
of the singularity of X: the topological type in the case of curves (see [24]), and
the analytical type in the case of normal toric surfaces (see [25]). Moreover, in
the case of irreducible plane curves, the minimal embedded resolution can be con-
structed from the jet schemes ([21]), and the same holds for rational double point
singularities ([28]).

Understanding the structure of jet schemes for particular singularities is an
interesting problem. It has been studied in [35] and [12] for determinantal varieties,
in [24] for plane curve singularities, in [25] for normal toric surfaces, in [26] for
rational double point surface singularities, and in [33] for commuting matrix pairs
schemes.

In this paper, we study jet schemes of a two-dimensional, irreducible quasi-
ordinary hypersurface singularity X = {f = 0}, with f ∈ C{x1, x2}[z]. We give a
combinatorial description of the irreducible components of the set of m-jets with
center in the singular locus of X, in terms of invariants of the singularity extracted
from the characteristic exponents of X. We de�ne the candidates to be the irre-
ducible components Cν

m, but there are many inclusions among these candidates.
We study these inclusions by de�ning on Z2

≥0 a subtle relation depending on m
and expressed in terms of the invariants cited above. It re�ects the evolution of
the singular loci of quasi-ordinary surfaces approximating our surface X.

Then, with the minimal elements with respect to this relation we de�ne a set
Fm ⊂ Z2, and for any ν ∈ Fm, we have a component Cν

m ⊂ Xm. We prove that
these are the irreducible components of m-jets through the singular locus.

Theorem 1.1. Let X be a quasi-ordinary hypersurface of dimension two. For any
m ∈ Z>0, the scheme of m−th jet of X with center in its singular locus has the
following decomposition into irreducible components(

π−1
m (XSing)

)
red

=
∪

ν∈Fm

Cν
m,

where πm : Xm −→ X is induced by projection.

Note that if we choose an a�ne variety Y ⊂ C3 which has a quasi-ordinary
singularity at a point x, then after shrinking Y into a small enough neighbourhood
of x, this gives us the decomposition of Ym into irreducible components, modulo
adding the component obtained as the Zariski closure of the set of jets whose center
is in the regular locus of Y.
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In general, for any algebraic variety V, the irreducible components of the jet
schemes Vm �t in natural projective systems, to which we associate a weighted
graph. Graphs are a powerful tool for studying surface singularities (see [32] for
a nice and historical introduction on this topic). The vertices of our graph corre-
spond to irreducible components, and to every vertex we attach the corresponding
embedding dimension and codimension in the jet scheme of the ambient space. We
will prove the following result.

Theorem 1.2. Let X be a quasi-ordinary hypersurface of dimension two. The
weighted graph associated with the irreducible components of jets through the singu-
lar locus determines and it is determined by the topological type of the singularity.

This theorem achieves one of our goals for this type of singularities: con-
structing a complete invariant of the topological type of the singularity from its jet
schemes; while the graph of the jet schemes is de�ned in general, the characteristic
exponents, which are also a complete invariant of quasi-ordinary singularities, does
not have a meaning for more general singularities for two reasons: 1) for a gen-
eral singularity we only have parametrizations of parts of the singularity (wedges),
2) the shape of these parametrizations is more complicated than the shape of
parametrizations of quasi-ordinary singularities.

It is also important to stress that other invariants involving arcs and jets, like
motivic zeta functions, do not determine the topological type in the case of quasi
ordinary singularities, see [9] and [18].

We devote Section 4 to study in detail the case of quasi-ordinary surfaces with
only one characteristic exponent, and in next section we deal with the general case.

In another direction, using Mustaµa's formula ([29]), we determine an irre-
ducible component of an m-th jet scheme, or equivalently a divisorial valuation
on the ambient space A3, which computes the log canonical threshold of the pair
X ⊂ A3 (the log canonical threshold for such a pair has been computed in [8],
looking at the poles of the motivic zeta function). This provides us with pairs
X ⊆ A3 whose log canonical threshold is not computed by a monomial divisorial
valuation. The quasi-ordinary surface in A3 de�ned by f = (z2 − x1x2)

2 − x3
1x2z

is such a pair. Note that for a pair C ⊆ A2, where C is a plane curve, the log
canonical threshold is always computed by a monomial valuation. See [4] and [2]
for the computation of the log canonical threshold for plane curves.

Using same ideas of [27], it seems possible to construct an embedded resolution
of singularities of X from the data of the graph constructed in this paper. We think
that such a resolution would shed light on the resolution of singularities obtained
by González Pérez in [17], and would make more precise his answer to the question
of Lipman (see [23]) on the construction of a canonical resolution of singularities
of a quasi-ordinary hypersurface from its characteristic exponents.

Acknowledgments. We are grateful to P.D. González Pérez and a number of
referees, for comments and suggestions which improved enormously the content and
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2. Jet schemes

In this section we de�ne jet schemes of an a�ne scheme X, see [13] and [19]
for details. Let X = Spec C[x1, . . . , xn]/I be an a�ne scheme of �nite type. For
m ∈ Z>0 the functor Fm : C-Schemes −→ Sets which, with an a�ne scheme
de�ned by a C-algebra A, associates

Fm

(
Spec(A)

)
= HomC

(
Spec(A[t]/(tm+1)), X

)
,

is representable by a C-scheme, denoted by Xm. This is the scheme of m-jets. Its
closed points are morphisms of the form

γ : Spec(C[t]/(tm+1)) −→ X.

Such a morphism γ is equivalent to a C-algebra homomorphism

γ∗ : C[x1, . . . , xn]/I −→ C[t]/(tm+1).

If we �x a set of generators f1, . . . , fr for the ideal I, the map γ∗ is determined by
the image of the xi

xi 7→ x
(0)
i + x

(1)
i t+ · · ·+ x

(m)
i tm, 1 ≤ i ≤ n,

where the relations

fi
(
x
(0)
1 + · · ·+ x

(m)
1 tm, . . . , x(0)

n + · · ·+ x(m)
n tm

)
≡ 0 mod tm+1(1)

must hold for each fi, with 1 ≤ i ≤ r. If we write

fi
(
x
(0)
1 + x

(1)
1 t+ · · ·+ x

(m)
1 tm, . . . , x

(0)
n + x

(1)
n t+ · · ·+ x

(m)
n tm

)
=

=
∑m

j=0 F
(j)
i (x

(0)
1 , . . . , x

(j)
1 , . . . , x

(0)
n , . . . , x

(j)
n ) tj mod tm+1,

(2)

we have that giving a closed point of Xm is equivalent to giving a point in

V (F
(j)
l )0≤j≤m,1≤l≤r ⊂ An

m,

where An
m = Spec(C[x(0)

i , . . . , x
(m)
i ]i=1,...,n). Hence we can make the following

identi�cation

Xm = Spec

C[x(0)
i , . . . , x

(m)
i ]i=1,...,n(

F
(j)
l

)
0≤j≤m, 1≤l≤r

 .(3)

We can give a useful relation among the F
(j)
l in terms of derivations. Let δ be the

C-derivation on C[x(0)
i , . . . , x

(m)
i ]i=1,...,n de�ned by

δ(x
(m)
i ) = 0 and δ(x

(j)
i ) = x

(j+1)
i for 0 ≤ j < m.
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For f ∈ C[x1, . . . , xn] let f
(0) = f(x

(0)
1 , . . . , x

(0)
n ), f (1) := δ(f) and recursively

f (m) = δ(f (m−1)). By using the change of variables

ϕ : C[x(0)
i , . . . , x

(m)
i ]1≤i≤n −→ C[x(0)

i , . . . , x
(m)
i ]1≤i≤n

x
(r)
i 7−→ r!x

(r)
i

we can prove that
ϕ(f (r)) = r!F (r).

Hence we have the following description of the jet schemes, equivalent to (3), coming
from di�erential algebra.

Proposition 2.1. (See Proposition 2.3 in [24]) Let X = Spec
(

C[x1,...,xn]
(f1,...,fr)

)
and

m ∈ Z>0, then

Xm = Spec

C[x(0)
i , . . . , x

(m)
i ]i=1,...,n(

f
(j)
i

)
1≤i≤r, 0≤j≤m

 .

Corollary 2.2. Every polynomial F (l) is non-zero and quasi-homogeneous of degree

l in x
(0)
k , . . . , x

(l)
k , for 1 ≤ k ≤ n. In F (0), . . . , F (l) the variables x

(l)
k for 1 ≤ k ≤ n

appear only in F (l), and with exponent one.

Example 2.3. Let X be the quasi-ordinary surface de�ned by the polynomial f =
z3 − x3

1x
2
2. The equations de�ning the 3-jets are (in both descriptions):

F (0) = z(0)
3 − x

(0)
1

3
x
(0)
2

2
= f (0)

F (1) = 3z(0)
2
z(1) − 3x

(0)
1

2
x
(1)
1 x

(0)
2

2
− 2x

(0)
1

3
x
(0)
2 x

(1)
2 = f (1)

F (2) = 3z(0)
2
z(2) + 3z(0)z(1)

2 − 6x
(0)
1

2
x
(1)
1 x

(0)
2 x

(1)
2 − 2x

(0)
1

3
x
(0)
2 x

(2)
2 − 3x

(0)
1

2
x
(2)
1 x

(0)
2

2

−x(0)
1

3
x
(1)
2

2
− 3x

(0)
1 x

(1)
1

2
x
(0)
2

2
= 1

2ϕ(f
(2)) = 1

2ϕ(δ(f
(1)))

F (3) = z(1)
3
+ 6z(0)z(1)z(2) + 3z(0)

2
z(3) − 2x

(0)
1

3
x
(0)
2 x

(3)
2 − 2x

(0)
1

3
x
(1)
2 x

(2)
2

−6x(0)
1

2
x
(1)
1 x

(0)
2 x

(2)
2 − 3x

(0)
1

2
x
(1)
1 x

(1)
2

2
− 6x

(0)
1

2
x
(2)
1 x

(0)
2 x

(1)
2

−6x(0)
1 x

(1)
1

2
x
(0)
2 x

(1)
2 − 3x

(0)
1

2
x
(3)
1 x

(0)
2

2
− 6x

(0)
1 x

(1)
1 x

(2)
1 x

(0)
2

2
− x

(1)
1

3
x
(0)
2

2

= 1
3!ϕ(f

(3)) = 1
3!ϕ(δ

2(f (1)))

For m > n ≥ 0, we have a canonical projection πm,n : Xm −→ Xn induced
by the projection C[t]/tm+1 −→ C[t]/tn+1, and we denote πm,0 simply by πm :
Xm −→ X.

Proposition 2.4. (see [11] and [13]) If X is a non-singular variety of dimension
d then for any m ≥ 0 the projections πm+1,m : Xm+1 −→ Xm are locally trivial

with �ber Ad. In particular Xm is a non-singular variety of dimension (m+ 1)d.
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The above construction of jet schemes in the algebraic case can be done anal-
ogously in the analytic case. Indeed, as we will see in the next section, we will deal
with f ∈ C{x1, x2}[z]. Then, for l ∈ Z≥0, denoting by

R(l) := C{x(0)
1 , x

(0)
2 }[x

(1)
k , . . . , x

(l)
k , z(0), . . . , z(l)]k=1,2,

we have that F (l) ∈ R(l), and

Xm = Spec

(
R(m)(

F (0), . . . , F (m)
)) .

We will anyway speak of the polynomials F (l) de�ning the space of m-jets.

Remark 2.5. To describe the components of
(
π−1
m (XSing)

)
red

, since the level m is

clear from the context, we will use the notation V (I) instead of the more accurate

one Spec
(
R(m)

I

)
.

3. Quasi-ordinary surface singularities

In this section we collect some well known facts about quasi-ordinary hyper-
surface singularities of dimension two. We state everything for the case of surfaces,
though the de�nitions and results hold in any dimension.

An equidimensional germ (X, 0), of dimension two, is quasi-ordinary (q.o. for
short) if there exists a �nite projection p : (X, 0) → (C2, 0) which is a local iso-
morphism outside a normal crossing divisor. If (X, 0) is a hypersurface there is
an embedding (X, 0) ⊂ (C3, 0), where X is de�ned by an equation f = 0, and
f ∈ C{x1, x2}[z] is a quasi-ordinary polynomial; that is, a Weierstrass polynomial

with discriminant ∆zf of the form ∆zf = xδ1
1 ·x

δ2
2 ϵ for a unit ϵ in the ring C{x1, x2}

of convergent power series and (δ1, δ2) ∈ Z2
>0. In these coordinates the projection

p is the restriction of the projection

C3 → C2, (x1, x2, z) 7→ (x1, x2).

From now on we assume (X, 0) to be analytically irreducible, that is, f ∈ C{x1, x2}[z]
is irreducible (see [5] and [14] for criteria of irreducibility of q.o. polynomials). The
Jung-Abhyankar theorem guarantees that the roots of a q.o. polynomial f , called

q.o. branches, are fractional power series in C{x1/n
1 , x

1/n
2 }, for n = deg f (see [1]).

The di�erence ζ(i)− ζ(j) of two di�erent roots of f divides the discriminant of f in

the ring C{x1/n
1 , x

1/n
2 }. Therefore ζ(i) − ζ(j) = x

λ
(1)
ij

1 x
λ
(2)
ij

2 uij where uij is a unit in

C{x1/n
1 , x

1/n
2 }. The exponents λij =

(
λ
(1)
ij , λ

(2)
ij

)
are characterized in the following

Lemma.

Lemma 3.1. (see [15], Prop. 1.3.) Let f ∈ C{x1, x2}[z] be an irreducible q.o. poly-
nomial. Let ζ be a root of f with expansion:

ζ =
∑

βλx
λ.(4)
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There exists 0 ̸= λ1, . . . , λg ∈ Q2
>0 such that λ1 ≤ λ2 ≤ · · · ≤ λg, and if M0 := Z2

and Mj := Mj−1 + Zλj for j = 1, . . . , g, then:

(i) βλi ̸= 0 and if βλ ̸= 0 then λ ∈Mj where j is the unique integer such that
λj 6 λ and λj+1 � λ (where 6 means coordinate-wise and we convey that
λg+1 =∞).

(ii) For j = 1, . . . , g, we have λj /∈Mj−1, hence the index nj = [Mj−1 : Mj ] is
> 1.

Moreover if ζ ∈ C{x1/n
1 , x

1/n
2 } is a fractional power series satisfying the conditions

above, then ζ is a quasi-ordinary branch.

De�nition 3.2. The exponents λ1, . . . , λg in Lemma 3.1 are called characteristic
exponents of the q.o. branch ζ. We denote by M the lattice Mg and we call it the
lattice associated to the q.o. branch ζ. We denote by N (resp. Ni) the dual lattice
of M (resp. Mi for i = 1, . . . , g). For convenience we set λ0 := (0, 0) and n0 := 1.
Moreover we set λg+1 =∞.

In [15] Gau proved that the characteristic exponents determine and are deter-
mined by the embedded topological type of (X, 0).

As a consequence of Lemma 3.1 we have the following result:

Lemma 3.3. If ζ is a quasi-ordinary branch of the form (4) then the series ζj−1 :=∑
λ̸≥λj

βλx
λ is a quasi-ordinary branch with characteristic exponents λ1, . . . , λj−1,

for j = 1, . . . , g.

De�nition 3.4. For 0 ≤ j ≤ g−1 we have the germ of quasi-ordinary hypersurface
(X(j), 0), where X(j) is parametrized by the branch ζj. For convenience we also

denote ζ by ζg and X by X(g).

Without loss of generality we relabel the variables x1, x2 in such a way that if

λj =
(
λ
(1)
j , λ

(2)
j

)
∈ Q2 for j = 1, . . . , g, then we have:(

λ
(1)
1 , . . . , λ(1)

g

)
>lex

(
λ
(2)
1 , . . . , λ(2)

g

)
,(5)

where >lex is lexicographic order. The q.o. branch ζ is said to be normalized if

λ1 is not of the form
(
λ
(1)
1 , 0

)
with λ

(1)
1 < 1. Lipman proved that the germ (X, 0)

can be parametrized by a normalized q.o. branch (see [15], Appendix). We assume
from now on that the q.o. branch ζ is normalized.

The semigroup Z2
>0 has a minimal set of generators v1, v2, which is a basis of

the lattice M0. The dual basis, {w1, w2}, is a basis of the dual lattice N0, and it
spans a regular cone σ in N0,R = N0 ⊗Z R. It follows that Z2

>0 = σ∨ ∩M0, where

σ∨ = R2
>0 is the dual cone of σ. The C-algebra C{x1, x2} is isomorphic to the

C�algebra
C{σ∨ ∩M0} =

{∑
cλx

λ | cλ ∈ C, λ ∈ σ∨ ∩M0

}
.

The local algebra OX = C{x1, x2}[z]/(f) of the singularity (X, 0) is isomorphic to
C{σ∨ ∩M0}[ζ]. By Lemma 3.1 the series ζ can be viewed as an element

∑
βλx

λ

of the algebra C{σ∨ ∩M}.
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The elements of M de�ned by:

γ1 = λ1 and γj+1 − njγj = λj+1 − λj for j = 1, . . . , g − 1,(6)

span the semigroup Γ := Z2
>0 + γ1Z>0 + · · · + γgZ>0 ⊂ σ∨ ∩M . Analogously to

λ0 and λg+1, we set γ0 = (0, 0) and γg+1 =∞, for convenience.

The semigroup Γ de�nes an analytic invariant of the germ (X, 0) (see [16],[30],[20]).

De�nition 3.5. The monomial variety associated to (X, 0) is the toric variety

XΓ := Spec C[Γ].

Moreover we associate with the characteristic exponents the following sequence
of semigroups:

Γj = σ∨ ∩M + γ1Z≥0 + · · ·+ γjZ≥0, for j = 0, . . . , g.

And we have the corresponding monomial varieties XΓj associated to Γj . We
denote by ei−1 := ni · · ·ng for 1 < i ≤ g and set eg := 1. Notice that, by (5) and
the de�nition of γ1, . . . , γg, we deduce that(

γ
(1)
1 , . . . , γ(1)

g

)
>lex

(
γ
(2)
1 , . . . , γ(2)

g

)
.(7)

The following Lemma gathers some important facts about the generators γj
and the semigroups Γj .

Lemma 3.6. (see Lemma 3.3 in [16])

(i) We have that γj > nj−1γj−1 for j = 2, . . . , g, where < means ̸= and ≤
coordinate-wise.

(ii) If a vector uj ∈ σ∨ ∩Mj, then we have uj + njγj ∈ Γj.

(iii) The vector njγj belongs to the semigroup Γj−1 for j = 1, . . . , g. Moreover,
we have a unique relation

njγj = α(j) + r
(j)
1 γ1 + · · ·+ r

(j)
j−1γj−1(8)

such that 0 ≤ r
(j)
i ≤ ni − 1 and α(j) ∈M0 for j = 1, . . . , g.

De�nition 3.7. Given two irreducible q.o. polynomials f and g in C{x1, x2}[z]
such that fg is a q.o. polynomial, we say that f and g have order of coincidence
α ∈ Q2 if α is the largest exponent on the set{

λij | f(ζ(i)) = g(ζ(j)) = 0
}
,

where ζ(i) and ζ(j) are roots of fg.
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De�nition 3.8. We associate to f a set of semi-roots

z = f0, f1, . . . , fg = f ∈ C{x1, x2}[z].
Every fj is an irreducible q.o. polynomial of degree n0 · · ·nj with order of coinci-
dence with f equal to λj+1 for j = 0, . . . , g.

They are parametrized by truncations of a root ζ(x
1/n
1 , x

1/n
2 ) of f in the fol-

lowing sense:

Proposition 3.9. (see [16]) Let q ∈ C{x1, x2}[z] be a monic polynomial of degree
n0 · · ·nj. Then q is a j-th semi-root of f if and only if q(ζ) = xγj+1ϵj for a unit
ϵj in C{x1, x2}[z].

Corollary 3.10. The quasi-ordinary polynomials fj ∈ C{x1, x2}[z] de�ning X(j)

(see De�nition 3.4) for j = 0, . . . , g − 1 form a system of semiroots of f . More
precisely fj is a j-th semiroot of f .

Semi-roots play an important role in the understanding of quasi-ordinary sin-
gularities. In what follows we state some results about quasi-ordinary polynomials
and semi-roots.

Lemma 3.11. (See Lemma 35 in [17]) The expansion of semi-roots is of the fol-
lowing form:

fj = f
nj

j−1 − cjx
α

(j)
1

1 x
α

(j)
2

2 f
r
(j)
1

0 · · · fr
(j)
j−1

j−2 +
∑

cα,rx
α1
1 xα2

2 fr1
0 · · · f

rj
j−1,(9)

where cj ∈ C∗, 0 ≤ r
(j)
i , ri < ni for i = 1, . . . , j, and

njγj = (α
(j)
1 , α

(j)
2 ) + r

(j)
1 γ1 + · · ·+ r

(j)
j−1γj−1 < (α1, α2) + r1γ1 + · · ·+ rjγj .

As a consequence we have the following description of f .

Lemma 3.12. For 0 ≤ l ≤ g − 1 we have

f = fel
l − dlx

β
(l)
1

1 x
β
(l)
2

2 f
s
(l)
1

0 · · · fs
(l)
l

l−1 +
∑

dβ,sx
β1

1 xβ2

2 fs1
0 · · · f

sl+1

l

where dl ∈ C∗, 0 ≤ s
(l)
i , si < ei, and

nl+1el+1γl+1 = (β
(l)
1 , β

(l)
2 ) + s

(l)
1 γ1 + · · ·+ s

(l)
l γl

≤ (β1, β2) + s1γ1 + · · ·+ sl+1γl+1

Sometimes we will write

f = fel
l +

∑
dβ,sx

β1

1 xβ2

2 fs1
0 · · · f

sl+1

l ,

with nl+1el+1γl+1 ≤ (β1, β2) + s1γ1 + · · · + sl+1γl+1, taking into account that for

β =
(
β
(l)
1 , β

(l)
2

)
and s =

(
s
(l)
1 , . . . , s

(l)
l , 0

)
we have dβ,s ̸= 0.
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De�nition 3.13. We de�ne

Zi = X ∩ {xi = 0}, for i = 1, 2

Z12 = X ∩ {x1 = x2 = 0}.

Moreover, the smallest number c ∈ {1, 2} with the property that

λ
(j)
i = 0, for all 1 ≤ i ≤ g and c+ 1 ≤ j ≤ 2

is called the equisingular dimension of the quasi-ordinary projection p.

By condition (5) we have that c gives the number of variables appearing in the
monomials xλ1 , . . . ,xλg . In [22] Lipman proved that the spaces Z1, Z2 and Z12 are
irreducible and described the singular locus of a q.o. singularity in terms of them.
We state his result here for the particular case of surfaces.

Theorem 3.14. (See Theorem 7.3 in [22]) Let X be a quasi-ordinary surface
singularity with characteristic exponents λ1, . . . , λg. Then we have:

(i) XSing = Z12 if and only if g = 1 and λ1 =
(
1
n ,

1
n

)
.

(ii) If c = 1 then XSing = Z1.

(iii) Otherwise c = 2, and since λ
(1)
1 ̸= 0, Z1 ⊂ X is a component of XSing.

Moreover, if we do not have simultaneously λ
(2)
k = 0 for all 1 ≤ k ≤ g − 1

and λ
(2)
g = 1

ng
, the singular locus is reducible of the form XSing = Z1 ∪Z2.

De�nition 3.15. Let X be a quasi-ordinary surface singularity with g ≥ 1 charac-
teristic exponents. We de�ne the integers g1 ≥ 0 and g2 ∈ {g1, g1 + 1} as follows:

if c = 1 we set g1 = g2 = g + 1,

otherwise (recall that we set γ0 = (0, 0)),

γ
(2)
g1 = 0 and γ

(2)
g1+1 ̸= 0,

g2 =


g1 + 1 if γ

(2)
g1+1 = 1

ng1+1

g1 otherwise

Remark 3.16. The integers g1 and g2 describe completely the singular locus of
X(j) for 1 ≤ j ≤ g. Indeed, �rst notice that

Z1 = {x1 = z = 0}

Z2 = {x2 = fg1 = 0}

Z12 = {(0, 0, 0)}
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and hence the singular locus of a quasi-ordinary surface singularity X is either
a point, or a line, or two lines, or a line and a singular curve. Moreover, for
1 ≤ j ≤ g, we have

X
(j)
Sing =


Z12 if j = 1 and λ1 =

(
1
n1

, 1
n1

)
Z1 if j ≤ g2

Z1 ∪ Z2 if g2 < j ≤ g

(10)

Then, geometrically, the meaning of the integer g2 is to measure the irreducibility

of the singular locus of the semi-roots, since X
(j)
Sing is irreducible if and only if

1 ≤ j ≤ min{g2, g}.

Now we de�ne a sequence of semi-open cones keeping track of the singular
locus of the quasi-ordinary hypersurfaces X(j) for j = 1, . . . , g.

De�nition 3.17. Recall that σ = R2
≥0. Let ρ1 = (1, 0)R≥0 and ρ2 = (0, 1)R≥0 be

its one-dimensional closed faces. For 1 ≤ j ≤ g

σSing,j =



◦
σ if X

(j)
Sing = Z12

σ \ ρ2 if X
(j)
Sing = Z1

σ \ {(0, 0)} if X
(j)
Sing = Z1 ∪ Z2

, and σReg,j = σ \ σSing,j .

For convenience we de�ne σReg,j = ρ1 ∪ ρ2 for j = −1, 0. Moreover we denote
σReg,g and σSing,g simply by σReg and σSing.

The sequence {σReg,−1, . . . , σReg,g} is not very complicated, in the sense that

most of the elements are the same. Since by de�nition γ
(2)
g1+1 = λ

(2)
g1+1, it is clear by

de�nition and by (10) that

for − 1 ≤ j ≤ g2 σReg,j =

{
ρ1 ∪ ρ2 if j < 1 or if j = 1 and γ1 =

(
1
n1

, 1
n1

)
ρ2 otherwise

for g2 + 1 ≤ j ≤ g σReg,j = {(0, 0)}

Moreover notice that, by de�nition, we have σSing,j ⊆ σSing,j+1.

De�nition 3.18. Given ν ∈ σ ∩N0, we de�ne the following integer

i(ν) =

 g + 1 if ν ∈ Ng

min {1 ≤ i ≤ g | ν /∈ Ni} otherwise

We �nish the section with another de�nition.
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De�nition 3.19. For ν ∈ σ ∩N0 we de�ne the ring

Rν =



C{x(0)
1 , x

(0)
2 } if ν = (0, 0)

C{x(0)
1 }[x

(ν2)
2 ] if ν ∈ ρ2

C{x(0)
2 }[x

(ν1)
1 ] if ν ∈ ρ1

C[x(ν1)
1 , x

(ν2)
2 ] otherwise

4. Jet schemes of q.o. surface singularities: the case of one

characteristic exponent

We describe the irreducible components of the m�jet schemes through the
singular locus of a q.o. surface with one characteristic exponent. First we de�ne
certain algebraic varieties Cν

m and prove its irreducibility. Since they cover the
whole

(
π−1
m (XSing)

)
red

, they are candidates to be the irreducible components of
m-jets through the singular locus, and we have to study the inclusions among them.

Finally we construct a graph Γ representing the decomposition of
(
π−1
m (XSing)

)
red

for every m, with a suitable decoration. We prove that this graph is equivalent to
the topological type of the singularity, i.e., to the characteristic exponent λ. All
these results will be generalized in Section 5. Since in that section we will work with
the generators of the semigroup Γ rather than with the characteristic exponents,
we will use now the notation γ instead of λ (recall that by de�nition γ = λ).

In this section X is a q.o. surface de�ned by the polynomial

f = zn − xa
1x

b
2 +

∑
(i,j)+kγ>nγ

cijkx
i
1x

j
2z

k,

where γ =
(
a
n ,

b
n

)
with a ≥ b ≥ 0 is the characteristic exponent. We have that

gcd(a, b, n) = 1 because we assume the q.o. surface to be irreducible. Moreover, if
b = 0 then we have that a > n, since the branch is normalized.

Remark 4.1. Note that f = zn − xa
1x

b
2 de�nes a toric surface, non-normal in

general (it is normal if and only if a = b = 1). Therefore, in particular, in this
section we describe the m�jets through the singular locus of a family of non-normal
toric surfaces.

Let us look at some examples.

Example 4.2. Let X be the surface de�ned by the q.o. polynomial

f = z3 − x4
1 + x4

1x2 + x3
1z + x2

1x2z
2

with characteristic exponent γ =
(
4
3 , 0
)
. We have that XSing = {z = x1 = 0}, and

then
π−1
m (XSing) = V

(
x
(0)
1 , z(0), F (1), . . . , F (m)

)
,
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since F (0) ≡ 0 mod
(
x
(0)
1 , z(0)

)
. Moreover

F (1) = 3z(0)
2
z(1) − 4x

(0)
1

3
x
(1)
1 + 4x

(0)
1

3
x
(1)
1 x

(0)
2 + x

(0)
1

4
x
(1)
2 + 3x

(0)
1

2
x
(1)
1 z(0) + x

(0)
1

3
z(1)

+2x
(0)
1 x

(1)
1 x

(0)
2 z(0)

2
+ x

(0)
1

2
x
(1)
2 z(0)

2
+ 2x

(0)
1

2
x
(0)
2 z(0)z(1)

≡ 0 mod
(
x
(0)
1 , z(0)

)
.

Analogously F (2) ≡ 0 mod
(
x
(0)
1 , z(0)

)
, but F (3) ≡ z(1)

3
mod

(
x
(0)
1 , z(0)

)
. Hence we

deduce that (
π−1
ℓ (XSing)

)
red

= V
(
x
(0)
1 , z(0)

)
, for ℓ = 1, 2(

π−1
3 (XSing)

)
red

= V
(
x
(0)
1 , z(0), z(1)

)
Note that, though they are de�ned by the same ideal

(
x
(0)
1 , z(0)

)
, we have that(

π−1
1 (XSing)

)
red
̸=
(
π−1
2 (XSing)

)
red

since
(
π−1
1 (XSing)

)
red
⊂ A3

1 while
(
π−1
2 (XSing)

)
red
⊂ A3

2 (see Remark 2.5). For
m = 4 we have

F (4) ≡ −x(1)
1

4
+ x

(1)
1

4
x
(0)
2 mod

(
x
(0)
1 , z(0), z(1)

)
.

Any jet through the singular locus has origin (0, x
(0)
2 , 0) ∈ X, and since we are

dealing with a germ of q.o. surface X, we deduce that x
(0)
2 is small enough so

that −1 + x
(0)
2 ̸= 0, or in other words, −1 + x

(0)
2 is a unit in the ring C{x(0)

2 }.
Therefore, from the equation −x(1)

1

4
+ x

(1)
1

4
x
(0)
2 = 0, we deduce that x

(1)
1 must

vanish, and hence (
π−1
4 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
.

Moreover, with analogous arguments we have

F (5) ≡ 0 mod
(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
F (6) ≡ z(2)

3
mod

(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
F (7) ≡ 0 mod

(
x
(0)
1 , x

(1)
1 , z(0), z(1), z(2)

)
F (8) ≡ (−1 + x

(0)
2 )x

(2)
1

4
mod

(
x
(0)
1 , x

(1)
1 , z(0), z(1), z(2)

)
F (9) ≡ z(3)

3
mod

(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2)

)
F (ℓ) ≡ 0 mod

(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3)

)
for ℓ = 10, 11

F (12) ≡ z(4)
3 − x

(3)
1

4
+ x

(3)
1

4
x
(0)
2 mod

(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3)

)
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Hence we deduce the following decomposition in irreducible components:(
π−1
5 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
(
π−1
ℓ (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0), z(1), z(2)

)
for ℓ = 6, 7(

π−1
8 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2)

)
(
π−1
ℓ (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3)

)
for ℓ = 9, 10, 11

(
π−1
12 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3), z(4)

3 − x
(3)
1

4
+ x

(3)
1

4
x
(0)
2

)
For m ≤ 12 we have seen that

(
π−1
m (XSing)

)
red

is irreducible (note that z3 − x4
1 +

x4
1x2 is an irreducible q.o. polynomial and therefore

(
π−1
12 (XSing)

)
red

is irreducible),
but for m > 12 this is no longer true. Indeed,

F (13) ≡ 3z(4)
2
z(5) − 4x

(3)
1

4
x
(4)
1 + x

(3)
1

4
x
(1)
2 + 4x

(3)
1

3
x
(4)
1 x

(0)
2 + x

(3)
1

3
z(4) mod I,

where we set I =
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3)

)
, and

(
π−1
13 (XSing)

)
red

has two
irreducible components:

V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3), F (12), F (13)

)
∩ {x(3)

1 ̸= 0}

V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , x

(3)
1 , z(0), z(1), z(2), z(3), z(4)

)
The irreducibility of the �rst component follows by Proposition 2.4, since its generic
part

V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3), F (12), F (13)

)
∩ {x(3)

1 ̸= 0}
projects by π13,12 into the non-singular locus

Reg
(
V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3), F (12)

))
.

Note that

F (12) ≡ z(4)
3
− x

(3)
1

4
+ x

(3)
1

4
x
(0)
2 mod

(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3)

)
,

and hence the regular part is contained in {x(3)
1 ̸= 0}.

The same kind of argument implies that

V
(
x
(0)
1 , x

(1)
1 , x

(2)
1 , z(0), z(1), z(2), z(3), F (12), . . . , F (m)

)
∩ {x(3)

1 ̸= 0},
is irreducible, and we will prove that it is indeed an irreducible component of(
π−1
m (XSing)

)
red

for any m ≥ 13.

In the example above we have components de�ned by the annihilation of hyper-

plane coordinates in A3
m = Spec C[x(i)

1 , x
(i)
2 , z(i)]i=0,...,m. They have the property

of staying irreducible when lifted from level m to m+ 1. We see next an example
where this is not always the case. This di�erence will turn out to be important
later, when studying the graph in Lemma 4.19.



JET SCHEMES OF QUASI-ORDINARY SURFACE SINGULARITIES 15

Example 4.3. Let X be the surface de�ned by the q.o. polynomial

f = z4 − x6
1x2 + x5

1x2z + x3
1x2z

2 + x2
1x2z

3,

with characteristic exponent γ = ( 64 ,
1
4 ). We have that XSing = {z = x1 = 0}, and

then

π−1
m (XSing) = V

(
x
(0)
1 , z(0), F (1), . . . , F (m)

)
,

since F (0) ≡ 0 mod
(
x
(0)
1 , z(0)

)
. We have that

F (1) = 4z(0)z(1) − 6x
(0)
1

5
x
(1)
1 x

(1)
1 x

(0)
2 − x

(0)
1

6
x
(1)
2 + 5x

(0)
1

4
x
(1)
1 x

(0)
2 z(0)

+x
(0)
1

5
x
(1)
2 z(0) + x

(0)
1

5
x
(0)
2 z(1) + 3x

(0)
1

2
x
(1)
1 x

(0)
2 z(0)

2
+ x

(0)
1

3
x
(1)
2 z(0)

2

+2x
(0)
1

3
x
(0)
2 z(0)z(1) + 2x

(0)
1 x

(1)
1 x

(0)
2 z(0)

3
+ x

(0)
1

2
x
(1)
2 z(0)

3

+3x
(0)
1

2
x
(0)
2 z(0)

2
z(1)

≡ 0 mod
(
x
(0)
1 , z(0)

)
Analogously we have that F (2) ≡ 0 mod

(
x
(0)
1 , z(0)

)
and F (3) ≡ 0 mod

(
x
(0)
1 , z(0)

)
,

but F (4) ≡ z(1)
4
mod

(
x
(0)
1 , z(0)

)
. Moreover F (5) ≡ 0 mod

(
x
(0)
1 , z(0), z(1)

)
and

F (6) ≡ −x(1)
1

6
x
(0)
2 mod

(
x
(0)
1 , z(0), z(1)

)
, which implies that(

π−1
6 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
∪ V

(
x
(0)
1 , x

(0)
2 , z(0), z(1)

)
.

Note how V
(
x
(0)
1 , z(0), z(1)

)
is a component at level m = 5, and it is de�ned by

hyperplane coordinates, but π−1
6,5

(
V (x

(0)
1 , z(0), z(1))

)
is no longer irreducible. Now,

to lift these two components to level 7 we study the polynomial F (7). We have that

F (7) ≡


0 mod

(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
−x(1)

1

6
x
(1)
2 mod

(
x
(0)
1 , x

(0)
2 , z(0), z(1)

)
Then

π−1
7,6

(
V
(
x
(0)
1 , x

(0)
2 , z(0), z(1)

))
= V

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , z(0), z(1)

)∪
∪

V
(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1)

)
and since V

(
x
(0)
1 , x

(1)
1 , x

(0)
2 , z(0), z(1)

)
⊆ V

(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
we conclude that(

π−1
7 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
∪ V

(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1)

)
At level m = 8 we have

F (8) ≡


z(2)

4
mod

(
x
(0)
1 , x

(1)
1 , z(0), z(1)

)
z(2)

4 − x
(1)
1

6
x
(2)
2 mod

(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1)

)
and

π−1
9,8

(
V
(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1), F (8)

))
red

=
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= π−1
9,8

(
Sing(V

(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1), F (8)

)
)
)∪

∪
π−1
9,8

(
Reg(V

(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1), F (8)

)
)
)
=

= V
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1), z(2)

)∪
∪

V
(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0), z(1), F (8), F (9)

)
∩ {x(1)

1 ̸= 0}.

We will describe the irreducible decomposition of m�jets through the singular
locus as (

π−1
m (XSing)

)
red

=
∪

ν∈Fm

Cν
m

for a certain �nite set Fm ⊆ Z2 and certain irreducible sets Cν
m that we proceed

to de�ne. First we recall, in the case of only one characteristic exponent, some
objects described in Section 3 in general.

The notion of equisingular dimension c was given in De�nition 3.13. By The-
orem 3.14 we have the following description of the singular locus of X (recall that
the characteristic exponent is γ =

(
a
n ,

b
n

)
with a ≥ b ≥ 0),

XSing =



{z = x1 = 0} if c = 1
(
i.e. b = 0

)
{(0, 0, 0)} if c = 2 and a = b = 1

{z = x1 = 0} if c = 2 and a > 1, b = 1

{z = x1 = 0} ∪ {z = x2 = 0} if c = 2 and a, b > 1

(11)

From De�nition 3.17 we have that

σSing =



◦
σ if γ =

(
1
n ,

1
n

)
σ \ ρ2 if γ =

(
a
n ,

1
n

)
or γ =

(
a
n , 0
)

σ \ {(0, 0)} otherwise

where recall that σ = R2
≥0 and ρ1 = (1, 0)R≥0 and ρ2 = (0, 1)R≥0 are its one

dimensional faces.

Given γ(t) ∈ Xm with xi◦γ(t) ̸= 0 for i = 1, 2, we have that ordt(xi◦γ(t)) ≥ 0.
Hence

ν :=
(
ordt(x1 ◦ γ(t)), ordt(x2 ◦ γ(t))

)
∈ σ ∩N0.

If we add the condition πm(γ(t)) ∈ XSing then ν ∈ σSing ∩N0. Moreover it is clear
that 0 ≤ νi ≤ m for i = 1, 2.
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De�nition 4.4. Given a positive integer m and ν ∈ σSing ∩ [0,m]2∩N0, we de�ne
an algebraic variety Cν

m ⊆ A3
m as follows (recall Remark 2.5).

• If m < ⟨ν, nγ⟩,

Cν
m := V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
Note that Cν

m is a non-singular algebraic variety of A3
m.

• If m = ⟨ν, nγ⟩ and ν ∈ N ,

Cν
⟨ν,nγ⟩ := V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1), F (⟨ν,nγ⟩)

)
Note that Cν

m is not well de�ned if ν ∈ N0 \N since ⟨ν, γ⟩ is not an integer.

The polynomial F (⟨ν,nγ⟩) modulo the ideal(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
is studied in Lemma 4.5, and it turns out that Cν

⟨ν,nγ⟩ is a singular algebraic variety

of A3
m.

• If m > ⟨ν, nγ⟩ and ν ∈ N ,

Cν
m := π−1

m,⟨ν,nγ⟩
(
Reg (Cν

⟨ν,nγ⟩)
)

where the overline denotes the Zariski closure and Reg stands for regular locus.

It turns out to be crucial to understand the variety Cν
⟨ν,nγ⟩.

Lemma 4.5. For ν ∈ σSing ∩N we de�ne

F (⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n
− x

(ν1)
1

a
x
(ν2)
2

b
+
∑

cijk x
(ν1)
1

i
x
(ν2)
2

j
z(⟨ν,γ⟩)

k

where the sum runs over i, j, k subject to the conditions: the monomial cijkx
i
1x

j
2z

k

appears in the q.o. polynomial f and ⟨ν, (i, j) + kγ⟩ = ⟨ν, nγ⟩. Note that, if ν ∈◦
σ,

the sum
∑

cijkx
(ν1)
1

i
x
(ν2)
2

j
z(⟨ν,γ⟩)

k
in F

(⟨ν,nγ⟩)
ν is zero.

We have that

F (⟨ν,nγ⟩) ≡ F (⟨ν,nγ⟩)
ν mod

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
,

and hence

Cν
⟨ν,nγ⟩ = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1), F (⟨ν,nγ⟩)

ν

)
.

In particular observe that F
(⟨ν,nγ⟩)
ν is a q.o. polynomial in Rν [z

(⟨ν,γ⟩)] (see
De�nition 3.19).

If ν ∈ σSing ∩
(
N0 \N

)
we de�ne

F (⟨ν,nγ⟩)
ν = −x(ν1)

1

a
x
(ν2)
2

b
+
∑

cij0x
(ν1)
1

i
x
(ν2)
2

j
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where cij0x
i
1x

j
2 is a monomial in f and ⟨ν, (i, j)⟩ = ⟨ν, nγ⟩. Then

F (⟨ν,nγ⟩) ≡ F (⟨ν,nγ⟩)
ν mod

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([⟨ν,nγ⟩])

)
The sum

∑
cij0x

(ν1)
1

i
x
(ν2)
2

j
is non-zero if and only if ν ∈ ρ1 ∪ ρ2. Moreover, if

ν ∈ ρ1 ∪ ρ2

F (⟨ν,nγ⟩)
ν = −x(ν1)

1

a
x
(ν2)
2

b
· U

where U is a unit in Rν .

Proof. If ν ∈ N , we have by de�nition that the polynomial F (⟨ν,nγ⟩) modulo

the ideal
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
is of the form

z(⟨ν,γ⟩)
n
− x

(ν1)
1

a
x
(ν2)
2

b
+
∑

cijk x
(α)
1

i
x
(β)
2

j
z(δ)

k

where the sum runs subject to the conditions

(i, j) + kγ > nγ

iα+ jβ + kδ = ⟨ν, nγ⟩

α ≥ ν1, β ≥ ν2, δ ≥ ⟨ν, γ⟩
If there exists at least one cijk ̸= 0 under these conditions

⟨ν, nγ⟩ = iα+ jβ + kδ ≥ iν1 + jν2 + k⟨ν, γ⟩ = ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩,
then all inequalities must be equalities and we deduce that

α = ν1, β = ν2 and δ = ⟨ν, γ⟩.
Then, the condition iα + jβ + kδ = ⟨ν, nγ⟩ is ⟨ν, (i, j) + kγ⟩ = ⟨ν, nγ⟩, and this
only holds if ν ∈ ρ1 ∪ ρ2.

If ν ∈ N0 \N , �rst note that

[⟨ν, γ⟩] < ⟨ν, γ⟩ < [⟨ν, γ⟩] + 1.

By de�nition F (⟨ν,nγ⟩) mod
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([⟨ν,γ⟩])

)
is

of the form

−x(ν1)
1

a
x
(ν2)
2

b
+
∑

cijkx
(α)
1

i
x
(β)
2

j
z(δ)

k

where the sum runs subject to the conditions

(i, j) + kγ > nγ

iα+ jβ + kδ = ⟨ν, nγ⟩

α ≥ ν1, β ≥ ν2, δ ≥ [⟨ν, γ⟩] + 1

If there exists at least one cijk ̸= 0 with i, j, k under these conditions and moreover
with k > 0, then

⟨ν, nγ⟩ = iα+ jβ + kδ ≥ iν1 + jν2 + k([⟨ν, γ⟩] + 1) > ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩
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Therefore we must have k = 0, and then

⟨ν, nγ⟩ = iα+ jβ ≥ ⟨ν, (i, j)⟩ ≥ ⟨ν, nγ⟩

Hence α = ν1 and β = ν2. As in the case ν ∈ N , the sum
∑

cij0x
(ν1)
1

i
x
(ν2)
2

j
is non-

zero if and only if ν ∈ ρ1∪ρ2 since the conditions (i, j) > nγ and ⟨ν, (i, j)⟩ = ⟨ν, nγ⟩
are compatible if and only if ν ∈ σSing ∩ (ρ1 ∪ ρ2).

If ν ∈ ρ1 then F
(⟨ν,nγ⟩)
ν = −x(ν1)

1

a
x
(0)
2

b
+
∑

cij0x
(ν1)
1

i
x
(0)
2

j
with the conditions

(i, j) > (a, b) and ⟨ν, nγ⟩ = ⟨ν, (i, j)⟩. Then i = a, and therefore j > b. Hence

F (⟨ν,nγ⟩)
ν = −x(ν1)

1

a
x
(0)
2

b(
1 +

∑
cij0x

(0)
2

j−b)
and 1 +

∑
cij0x

(0)
2

j−b
is a unit in C{x(0)

2 }.
If ν ∈ ρ2 the proof is analogous, simply noticing (by the de�nition of g2) that,

since ν ∈ σSing, we must be in the case b > 1. �
Example 4.6. Consider the q.o. surface de�ned by f = z2 − x4

1x
3
2 + x2

1x
2
2z, with

characteristic exponent λ =
(
4
2 ,

3
2

)
. For ν = (2, 0) we have

F (8)
ν = z(4)

2
− x

(2)
1

4
x
(0)
2

3
+ x

(2)
1

2
x
(0)
2

2
z(4).

Obviously we can not write F
(8)
ν as z(4)

2− x
(2)
1

4
x
(0)
2

3
·U with U a unit, as we have

proved in Lemma 4.5 that it is the case when ν /∈ N . Notice however that

V
(
F (8)
ν

)
∩ {x(2)

1 ̸= 0} ∩ {x(0)
2 ̸= 0} ⊆ {z(4) ̸= 0},

this will turn out to be crucial (see Corollary 5.16 for a complete statement in the
general case).

To understand completely the sets Cν
m for m > ⟨ν, nγ⟩, we need to study the

regular part Reg
(
Cν

⟨ν,nγ⟩
)
. It is closely related to the regular locus of X, described

in (11).

Lemma 4.7. For ν ∈ σSing ∩N , let us denote

Jν =
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
We have:

(i) if γ =
(
1
n ,

1
n

)
,

Reg
(
Cν

⟨ν,nγ⟩
)
= Cν

⟨ν,nγ⟩

and, as a consequence, for m > ⟨ν, nγ⟩,

Cν
m = V

(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
(ii) otherwise γ =

(
a
n ,

b
n

)
with a > 1 and

Reg
(
Cν

⟨ν,nγ⟩
)
=


Cν

⟨ν,nγ⟩ ∩ {x
(ν1)
1 ̸= 0} if b ∈ {0, 1}

Cν
⟨ν,nγ⟩ ∩ {x

(ν1)
1 ̸= 0} ∩ {x(ν2)

2 ̸= 0} otherwise
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As a consequence, for m > ⟨ν, nγ⟩ and b = 0 or 1, we have that

Cν
m = V

(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0}

while for m > ⟨ν, nγ⟩ and b ̸= 0, 1,

Cν
m = V

(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0} ∩ {x(ν2)
2 ̸= 0}

Proof. We distinguish cases according to the description in (11) of the singular
locus.

(i) If γ =
(
1
n ,

1
n

)
the claim of the Lemma is clear, since the singular locus of

such a q.o. surface is the origin.

(ii) If γ =
(
a
n , 0
)
we have to prove that, in Cν

⟨ν,nγ⟩, the conditions x
(ν1)
1 ̸= 0

and z(⟨ν,γ⟩) ̸= 0 are equivalent. By Lemma 4.5,

F (⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n
− x

(ν1)
1

a
+
∑

cijkx
(ν1)
1

i
x
(ν2)
2

j
z(⟨ν,γ⟩)

k

is a de�ning equation of Cν
⟨ν,nγ⟩. If the sum in F

(⟨ν,nγ⟩)
ν is empty the claim

is obvious. Otherwise ν ∈ ρ1 ∪ ρ2 and, since ν ∈ σSing, we deduce that
ν ∈ ρ1. Then

F (⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n
− x

(ν1)
1

a
+
∑

cijkx
(ν1)
1

i
x
(0)
2

j
z(⟨ν,γ⟩)

k

with ⟨ν, (i, j) + kγ⟩ = ⟨ν, nγ⟩, or equivalently

ν1

(
i+ k

a

n

)
= ν1n

a

n

This implies that i + k a
n = a, and since 0 ≤ k < n and gcd(a, n) = 1, we

deduce that i = a and k = 0. Then j > 0 for any caj0 ̸= 0 and we can

write F
(⟨ν,nγ⟩)
ν as

F
(⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n − x
(ν1)
1

a
+
∑

j caj0x
(ν1)
1

a
x
(0)
2

j

= z(⟨ν,γ⟩)
n − x

(ν1)
1

a
(
1 +

∑
j caj0x

(0)
2

j
)

Since 1 +
∑

caj0x
(0)
2

j
is a unit in Rν = C{x(0)

2 }[x
(ν1)
1 ], it does not vanish,

and the claim follows.

(iii) If γ =
(
a
n ,

1
n

)
, by Lemma 4.5 we have that

F (⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n
− x

(ν1)
1

a
x
(ν2)
2 +

∑
cijkx

(ν1)
1

i
x
(ν2)
2

j
z(⟨ν,γ⟩)

k

where the sum runs over (i, j, k) such that (i, j) + kγ > (a, 1). Therefore
we deduce that for any such (i, j, k) we have i > 0 because 0 ≤ k < n. It
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follows that if x
(ν1)
1 = 0 and F

(⟨ν,nγ⟩)
ν = 0 then we have that z(⟨ν,γ⟩) = 0.

Hence

Reg
(
Cν

⟨ν,nγ⟩
)
= Cν

⟨ν,nγ⟩∩{z
(⟨ν,γ⟩) ̸= 0}

∪
Cν

⟨ν,nγ⟩∩{x
(ν1)
1 ̸= 0} = Cν

⟨ν,nγ⟩∩{x
(ν1)
1 ̸= 0}

(iv) If γ =
(
a
n ,

b
n

)
with b > 1, we have that

Reg
(
Cν

⟨ν,nγ⟩
)
= Cν

⟨ν,nγ⟩ ∩ {x
(ν1)
1 ̸= 0} ∩ {x(ν2)

2 ̸= 0}
∪

Cν
⟨ν,nγ⟩ ∩ {z

(⟨ν,γ⟩) ̸= 0}

and we claim that Cν
⟨ν,nγ⟩∩{z

(⟨ν,γ⟩) ̸= 0} = Cν
⟨ν,nγ⟩∩{x

(ν1)
1 ̸= 0}∩{x(ν2)

2 ̸=
0}. Indeed, by Lemma 4.5 it follows that

F (⟨ν,nγ⟩)
ν = z(⟨ν,γ⟩)

n
− x

(ν1)
1

a
x
(ν2)
2

b
+
∑

cijk x
(ν1)
1

i
x
(ν2)
2

j
z(⟨ν,γ⟩)

k

is a de�ning equation of Cν
⟨ν,nγ⟩. If the sum is zero, the claim is obvious.

Otherwise ν ∈ ρ1 ∪ ρ2. Let us suppose that ν ∈ ρ1 (the case ν ∈ ρ2
is completely analogous). The monomials on the sum are of the form

cijkx
(ν1)
1

i
x
(0)
2

j
z(⟨ν,γ⟩)

k
with i + k a

n = a and j + k b
n > b. In particular we

deduce that i, j > 0. Therefore if F
(⟨ν,nγ⟩)
ν = 0 and either x

(ν1)
1 = 0 or

x
(0)
2 = 0 it follows that z(⟨ν,γ⟩) = 0. And conversely, if z(⟨ν,γ⟩) = 0, then

F (⟨ν,nγ⟩)
ν

(
z(⟨ν,γ⟩) = 0

)
= −x(ν1)

1

a
x
(0)
2

b
· U

with U a unit in C{x(0)
2 } (because if we impose k = 0 on the conditions

i+ k a
n = a and j+ k b

n > b we obviously obtain i = a and j > b). Then the
result follows.

�

De�nition 4.8. We de�ne the set Am ∪Bm ⊆ σSing ∩ [0,m]2 ∩N0 as

Am = {ν ∈ σSing ∩ [0,m]2 ∩N0 | ⟨ν, nγ⟩ > m}

Bm = {ν ∈ σSing ∩ [0,m]2 ∩N | ⟨ν, nγ⟩ ≤ m}

Moreover, we decompose the set Bm as Bm = B=
m ∪B<

m, where

B=
m = {ν ∈ σSing ∩ [0,m]2 ∩N | ⟨ν, nγ⟩ = m}

B<
m = {ν ∈ σSing ∩ [0,m]2 ∩N | ⟨ν, nγ⟩ < m}

Remark 4.9. Notice that, for m ∈ Z>0, the set Bm is

Bm = {ν ∈ σSing ∩ [0,m]2 ∩N | aν1 + bν2 ≤ m}

= {ν ∈ σSing ∩ [0,m]2 ∩N0 | aν1+bν2

n ∈ Z and aν1 + bν2 ≤ m}
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For any m > 0 and any ν ∈ Am ∪ Bm, we have de�ned an algebraic variety
Cν

m in De�nition 4.4. These are the candidates to be the irreducible components
of
(
π−1
m (XSing)

)
red

. To prove this assertion we need to make sure that these sets

are irreducible, and that they cover
(
π−1
m (XSing)

)
red

.

Lemma 4.10. For m ∈ Z>0 and ν ∈ Am ∪ Bm we have that Cν
m is irreducible.

Moreover its codimension is:

Codim
(
Cν

m

)
=

 ν1 + ν2 + [mn ] if ν ∈ Am

ν1 + ν2 + ⟨ν, γ⟩+m− ⟨ν, nγ⟩+ 1 if ν ∈ Bm

Proof. For ν ∈ Am ∪ B=
m the claim is clear by de�nition and by Lemma 4.5.

If ν ∈ B<
m it follows by Proposition 2.4. �

Lemma 4.11. For m ∈ Z>0,(
π−1
m (XSing)

)
red

=
∪

ν∈Am∪Bm

Cν
m

Proof. By de�nition we have that ∪ν∈Am∪BmCν
m ⊆

(
π−1
m (XSing)

)
red

. We

have to prove that any m-jet γ(t) ∈
(
π−1
m (XSing)

)
red

belongs to certain Cν
m with

ν ∈ Am ∪Bm.

• Suppose �rst that xi ◦ γ(t) ̸= 0 for i = 1, 2. Then we set ν :=
(
ordt(x1 ◦

γ(t)), ordt(x2 ◦ γ(t))
)
. We have that ν ∈ σSing ∩ [0,m]2 ∩N0, and we only need to

prove that if ⟨ν, nγ⟩ ≤ m then ν ∈ N . Indeed, let us suppose the contrary, that
m ≥ ⟨ν, nγ⟩ and ν ∈ N0 \N . We de�ne the ideal

J =
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2

)
.

Note that γ(t) ∈ V (J)∩{x(ν1)
1 ̸= 0}∩{x(ν2)

2 ̸= 0}. Using that f ◦γ(t) ≡ 0 mod tm+1

we deduce that

γ(t) ∈ V
(
J + (z(0), . . . , z([⟨ν,γ⟩]))

)
∩ {x(ν1)

1 ̸= 0} ∩ {x(ν2)
2 ̸= 0}

and that

F (⟨ν,nγ⟩) ≡ −x(ν1)
1

a
x
(ν2)
2

b
+
∑

cijkx
(ν1)
1

i
x
(ν2)
2

j
z([⟨ν,γ⟩]+1)k mod J+

(
z(0), . . . , z([⟨ν,γ⟩])

)
where the sum runs under the conditions (i, j)+kγ > nγ and ⟨ν, (i, j)⟩+k([⟨ν, γ⟩]+
1) = ⟨ν, nγ⟩. But, since ν /∈ N we have [⟨ν, γ⟩] + 1 > ⟨ν, γ⟩, and then

⟨ν, (i, j)⟩+ k([⟨ν, γ⟩] + 1) > ⟨ν, (i, j) + kγ⟩ ≥ ⟨ν, nγ⟩

and we deduce that F (⟨ν,nγ⟩) ≡ −x(ν1)
1

a
x
(ν2)
2

b
mod J +

(
z(0), . . . , z([⟨ν,γ⟩])

)
. Since

we have that x
(ν1)
1

a
x
(ν2)
2

b
is non-zero, this contradicts the fact that γ(t) ∈ Xm,

because ⟨ν, nγ⟩ ≤ m.
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• Suppose that x1◦γ(t) = 0 and x2◦γ(t) ̸= 0. We set ν2 := ordt
(
x2◦γ(t)

)
≤ m.

Note that ν := (m, ν2) ∈ Am and since γ(t) ∈ Cν
m we are done.

• If x1 ◦ γ(t) ̸= 0 and x2 ◦ γ(t) = 0 then we set ν := (ordt(x1 ◦ γ(t)),m). We
have that if b ̸= 0 then ⟨ν, nγ⟩ > m and therefore ν ∈ Am. If b = 0 and aν1 ≤ m
we can prove, arguing as in the case xi ◦ γ(t) ̸= 0 for i = 1, 2, that ν ∈ N . Then
ν ∈ Bm. In both cases (b = 0 and b ̸= 0) we have that γ(t) ∈ Cν

m.

• If xi ◦ γ(t) ̸= 0 for i = 1, 2, we set ν := (m,m). We have that ν ∈ Am and
γ(t) ∈ Cν

m. �

The description given in Lemma 4.11 is not the decomposition in irreducible
components, we still have to study the inclusions among the sets Cν

m.

Let us denote by ≤ the coordinate-wise order:

ν ≤ ν′ ⇐⇒ ν′ ∈ ν + σ

⇐⇒ νi ≤ ν′i for i = 1, 2
(12)

Then, given ν, ν′ ∈ Am ∪ Bm such that ν ̸≤ ν′ it is clear that Cν′

m * Cν
m, since for

any ν, by de�nition, we have

Cν
m ⊆ V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2

)
.

Therefore we have to consider ν, ν′ ∈ Am ∪ Bm with ν ≤ ν′ and study wether we
have the inclusion Cν′

m ⊆ Cν
m or not.

De�nition 4.12. We de�ne, for m ∈ Z>0, the relation ≤m on Am∪Bm as follows,

ν ≤m ν′ if and only if

 ν′ − ν ∈ σReg,0 if ν, ν′ ∈ Am ∪B=
m

ν′ − ν ∈ σReg,1 otherwise

Remark 4.13. Note that if ν ≤m ν′ then ν ≤ ν′.

We have de�ned, for every m ∈ Z>0, a partial order ≤m on Z2
≥0. Hence, given

any subset R ⊆ Z2
≥0, we may consider the set

min≤mR = {v ∈ R | @ w ∈ R such that w ≤m v}

Theorem 4.14. The decomposition of
(
π−1
m (XSing)

)
red

in irreducible components
is given by (

π−1
m (XSing)

)
red

=
∪

ν∈Fm

Cν
m

where Fm = min≤m{Am ∪Bm}.
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γ = ( an ,0)

m = ⟨ν, nγ⟩

B<
m

↓

Am

↓ ←

γ = ( 1n ,
1
n )

@
@

@
@

@
@

m = ⟨ν, nγ⟩

B<
m

Am

↓ ←
↓
←

γ = ( an ,
1
n )

B
B
B
B
B
B
B
BB

AmB<
m

↓ ↓ ←

m = ⟨ν, nγ⟩

γ = ( an ,
b
n )

A
A
A
A
A
A
AA

B<
m

Am

↓ ←

m = ⟨ν, nγ⟩

Figure 1. A sketch of the di�erent orderings ≤m in the case of
one characteristic exponent.

Proof. Notice �rst that, for ν, ν′ ∈ Am, we have ν ≤m ν′ if and only if ν ≤ ν′,
simply because Am ⊆ N0 and σReg,0 = ρ1 ∪ ρ2. See Figure 1 for a sketch of how
the relation ≤m acts on Am∪Bm for the di�erent cases depending on γ. Moreover,
for any ν ∈ Am, by de�nition we have

Cν
m = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
.

Then it is clear that, given ν, ν′ ∈ Am,

ν′ ∈ ν + σ ⇐⇒ Cν′

m ⊆ Cν
m,

and we deduce that ∪
ν∈Am

Cν
m =

∪
ν∈min≤Am

Cν
m

where recall that by de�nition ν ≤ ν′ if and only if ν′ ∈ ν + σ.

To prove the statement we distinguish cases depending on γ.

(i) If γ = ( 1n ,
1
n ), the relation is

ν ≤m ν′ if and only if ν′ − ν ∈ ρ1 ∪ ρ2

for any ν, ν′ ∈ Am ∪Bm. Moreover σSing =
◦
σ and

Am = {ν ∈◦
σ ∩[0,m]2 ∩N0 | ν1 + ν2 > m}

Bm = {ν ∈◦
σ ∩[0,m]2 ∩N | ν1 + ν2 ≤ m}

We distinguish two cases, m < n and m ≥ n.
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If m < n then Bm = ∅ (since ⟨ν, γ⟩ = ν1+ν2

n ∈ N and ν1 + ν2 ≤ m < n
are incompatible conditions) and therefore

Fm = min≤mAm = min≤Am

= {ν ∈◦
σ ∩N0 | ν1 + ν2 = m+ 1}

= {(1,m), (2,m− 1), . . . , (m, 1)}

If m ≥ n, we have that

B0 := {(1, n− 1), . . . , (n− 1, 1)} ⊆ Bm

and

Am ∪Bm ⊆
∪

ν∈B0

(ν + σ)

Let ν′ ∈ Am ∪ Bm \ B0, we will prove that there exists ν ∈ B0 such that

Cν′

m ⊆ Cν
m. There are two cases:

• If ν′ ∈ Am, then

Cν′

m = V
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z([m/n])
)

Let ν be any point in B0 such that ν′ ∈ ν + σ. Then

Cν
m = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), F (n), . . . , F (m)

)
We claim that Cν′

m ⊆ Cν
m. Indeed, �rst it is clear that for i = 1, 2

x
(0)
i , . . . , x

(νi−1)
i , z(0) ∈

(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z([m/n])
)

We have to prove that, for n ≤ l ≤ m

F (l) ∈
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z([m/n])
)

How does F (l) look like? It consists of monomials of the form:

z(a1) · · · z(an) with ai ≤ l and a1 + · · ·+ an = l

x
(b1)
1 x

(b2)
2 with b1, b2 ≤ l and b1 + b2 = l

x
(r1)
1 · · ·x(rα1 )

1 x
(s1)
2 · · ·x(sα2 )

2 z(t1) · · · z(tk) with ri, si, ti ≤ l, and∑
ri +

∑
si +

∑
t1 = l

with the condition (α1, α2) + kγ > nγ (we are just deriving the equation
F (0) l times and forgetting about the coe�cient of each monomial). Let us
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impose now the conditions

ai, tj ≥ [mn ] + 1

b1, ri ≥ ν′1

b2, si ≥ ν′2

which correspond to the fact that we are interested in the equation F (l)

modulo the ideal(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z([m/n])
)
.

Then we have that

l = a1 + · · ·+ an ≥ n
(
[
m

n
] + 1

)
> m

which is impossible. Moreover

l = b1 + b2 ≥ ν′1 + ν′2 > m

since ν′ ∈ Am, and this is a contradiction. Finally

l = r1 + · · ·+ rα1 + s1 + · · ·+ sα2 + t1 + · · ·+ tk
≥ ⟨ν′, (α1, α2)⟩+ k([mn ] + 1)
≥ ⟨ν′, (1, 1)− kγ⟩+ k([mn ] + 1)
= (ν′1 + ν′2)(1− k

n ) + k([mn ] + 1)
> m+ k([mn ] + 1− m

n ) > m

Then we have proved that for l ≤ m

F (l) ≡ 0 mod
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z([m/n])
)
.

• If ν′ ∈ Bm, the strategy is the same, and we can prove that Cν′

m ⊆ Cν
m

for any ν ∈ B0 such that ν′ ∈ ν + σ. Indeed,

Cν′

m = V
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z(⟨ν
′,γ⟩−1), F (⟨ν′,nγ⟩), . . . , F (m)

)
and

Cν
m = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), F (n), . . . , F (m)

)
We only have to prove that for n ≤ l < ⟨ν′, nγ⟩

F (l) ∈
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z(⟨ν
′,γ⟩−1)

)
In this case note that ν′1 + ν′2 ≤ m and ν ∈ N . The monomials of F (l) are
described in the previous case, but now the conditions we impose are

ai, ti ≥ ⟨ν′, γ⟩

b1, ri ≥ ν′1

b2, si ≥ ν′2



JET SCHEMES OF QUASI-ORDINARY SURFACE SINGULARITIES 27

Then

l = a1 + · · ·+ an ≥ n⟨ν′, γ⟩
which is impossible. Moreover

l = b1 + b2 ≥ ν′1 + ν′2 = n⟨ν′, γ⟩

another contradiction. And �nally,

l = r1 + · · ·+ rα1 + s1 + · · ·+ sα2 + t1 + · · ·+ tk
≥ α1ν

′
1 + α2ν

′
2 + k⟨ν′γ⟩

= ⟨ν′, (α1, α2) + kγ⟩ ≥ n⟨ν′, γ⟩

Then we have proved that

F (l) ≡ 0 mod
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z(⟨ν
′,γ⟩−1)

)
,

and the claim follows.

(ii) If γ = ( an , 0), we have that gcd(a, n) = 1 and a > n (recall that the q.o.
surface is irreducible and the branch is normalized). We have that

Am = {ν ∈ σSing ∩ [0,m]2 ∩N0 | aν1 > m}

Bm = {ν ∈ σSing ∩ [0,m]2 ∩N | aν1 ≤ m}

Then, in this case, min≤mAm consists of a single element, and∪
ν∈Am

Cν
m = Cν∗

m

where ν∗ = ([ma ] + 1, 0) is the smallest element (with respect to ≤) in Am.

For ν, ν′ ∈ B<
m with ν′−ν ∈ ρ2 we have that C

ν′

m ⊆ Cν
m. Indeed, we have

that ν′ = ν + (0, r) with r ∈ Z>0, and then ⟨ν, γ⟩ = ⟨ν′, γ⟩. Then (recall

the notation Jν =
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
)

Cν
m = V

(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0}

Cν′

m = V
(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0}

and the claim follows. Therefore,∪
ν∈B<

m

Cν
m =

∪
ν∈min≤mB<

m

Cν
m

and using that in this case

ν ∈ N if and only if ν + r(0, 1) ∈ N, with r ∈ Z

we deduce that

min≤mB<
m ⊆ N× {0}
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So far we have that(
π−1
m (XSing)

)
red

=
∪

ν∈{ν∗}∪B=
m∪ min≤mB<

m

Cν
m

Given ν, ν′ ∈ min≤mB<
m with ν ≤ ν′, then ν = (ν1, 0) and ν′ = (ν′1, 0) with

ν1 < ν′1 and ν1
a
n , ν

′
1
a
n ∈ Z, and by Lemma 4.10 we have

Codim(Cν
m)− Codim(Cν′

m ) = (ν′1 − ν1)
(
a− 1− a

n

)
and since a > n > 2 we have that an > a + n and we deduce that
Codim(Cν

m) > Codim(Cν′

m ) and therefore Cν′

m * Cν
m.

• If B=
m = ∅, it is because m ̸≡ 0 mod a, and then

Fm = {ν∗} ∪min≤mB<
m

since ν∗ is not comparable by ≤m with any element in B<
m. We have to

prove that for any ν ∈ min≤mB<
m we have Cν∗

m * Cν
m. By Lemma 4.10 we

have

Codim(Cν
m)− Codim(Cν∗

m ) = ν1 + ν1
a
n +m− ν1a− [ma ]− [mn ]

= m− ν1
an−a−n

n − [ma ]− [mn ]

= m
a + m

n +m(1− 1
a −

1
n )− ν1

an−a−n
n − [ma ]− [mn ]

= m
a − [ma ] +

m
n − [mn ] + (ma − ν1)

an−a−n
n

which is positive since m > aν1 and an−a−n
n > 0. Hence dim(Cν∗

m ) >

dim(Cν
m) and therefore Cν∗

m * Cν
m.

• Suppose now that B=
m ̸= ∅ (i.e. m ≡ 0 mod a) and let us denote

ν◦ = (m/a, 0) its smallest element. Then ν∗ = (m/a + 1, 0) and ν◦ ≤ ν∗.

We claim that Cν∗

m ⊆ Cν◦

m . Indeed, we have

Cν∗

m = V
(
x
(0)
1 , . . . , x

(m/a)
1 , z(0), . . . , z(m/n)

)
Cν◦

m = V
(
x
(0)
1 , . . . , x

(m/a−1)
1 , z(0), . . . , z(m/n−1), F (m)

)
and, by Lemma 4.5,

F (m) ≡ z(m/n)n − x
(m/a)
1

a
+
∑

cijkx
(m/a)
1

i
x
(0)
2

j
z(m/n)k mod Jν◦

Since there are no monomials of the form c0j0x
(0)
2

j
, F (m) ≡ 0 mod Jν∗

and

the inclusion Cν∗

m ⊆ Cν◦

m follows. Then

Fm = {ν◦} ∪min≤mB<
m

This is the description in irreducible components, or in other words, there
are no more inclusions among the sets Cν

m. We only need to prove that for
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any ν ∈ B<
m we have Cν◦

m * Cν
m. And this follows since

Codim(Cν
m)− Codim(Cν◦

m ) =
(m
a
− ν1

)an− a− n

n
> 0

(iii) If γ = ( an ,
1
n ), we have

Am = {ν ∈ σSing ∩ [0,m]2 ∩N0 | aν1 + ν2 > m}

Bm = {ν ∈ σSing ∩ [0,m]2 ∩N | aν1 + ν2 ≤ m}

If ν, ν′ ∈ B<
m with ν ≤m ν′, then ν′ = ν + (0, rn). Let us prove that

Cν′

m ⊆ Cν
m. We have

Cν
m = V

(
Jν , F (⟨ν,nγ⟩), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0}

Cν′

m = V
(
Jν′ , F (⟨ν′,nγ⟩), . . . , F (m)

)
∩ {x(ν′

1)
1 ̸= 0}

and since ν′1 = ν1, ν
′
2 > ν2 and ⟨ν′, γ⟩ > ⟨ν, γ⟩, it is enough to prove that

for ⟨ν, nγ⟩ ≤ l < ⟨ν′, nγ⟩,

F (l) ∈
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z(⟨ν
′,γ⟩−1)

)
The monomials in F (l) are of the form

z(c1) · · · z(cn) with ci ≤ l and c1 + · · ·+ cn = l

x
(b1)
1 · · ·x(ba)

1 x
(ba+1)
2 with bi ≤ l and b1 + · · ·+ ba+1 = l

x
(r1)
1 · · ·x(rα1 )

1 x
(s1)
2 · · ·x(sα2 )

2 z(t1) · · · z(tk) with ri, si, ti ≤ l and∑
ri +

∑
si +

∑
ti = l

with the condition (α1, α2) + kγ > nγ. Imposing the conditions

ci, tj ≥ ⟨ν′, γ⟩

bi, rj ≥ ν′1

ba+1, sj ≥ ν′2

on the monomials of F (l), we have

l = c1 + · · ·+ cn ≥ ⟨ν′, nγ⟩

l = b1 + · · ·+ ba + ba+1 ≥ aν′1 + ν′2 = ⟨ν′, nγ⟩

l = r1 + · · ·+ rα1 + s1 + · · ·+ sα2 + t1 + · · ·+ tk
≥ α1ν

′
1 + α2ν

′
2 + k⟨ν′, γ⟩

= ⟨ν′, (α1, α2) + kγ⟩ ≥ ⟨ν′, nγ⟩
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and hence we have proved that for ⟨ν, nγ⟩ ≤ l < ⟨ν′, nγ⟩

F (l) ≡ 0 mod
(
x
(0)
1 , . . . , x

(ν′
1−1)

1 , x
(0)
2 , . . . , x

(ν′
2−1)

2 , z(0), . . . , z(⟨ν
′,γ⟩−1)

)
If there exists ν◦ ∈ B=

m and ν∗ ∈ min≤mAm such that ν◦ ≤ ν∗, we claim

that Cν∗

m ⊆ Cν◦

m . Indeed,

Cν◦

m = V
(
x
(0)
1 , . . . , x

(ν◦
1−1)

1 , x
(0)
2 , . . . , x

(ν◦
2−1)

2 , z(0), . . . , z(⟨ν
◦,γ⟩−1), F (m)

)
Cν∗

m = V
(
x
(0)
1 , . . . , x

(ν∗
1−1)

1 , x
(0)
2 , . . . , x

(ν∗
2−1)

2 , z(0), . . . , z[m/n]
)

and since m = ⟨ν◦, nγ⟩, and
ν◦i ≤ ν∗i , for i = 1, 2

⟨ν◦, γ⟩ − 1 < [mn ] = ⟨ν◦, γ⟩
by Lemma 4.5 it follows that

F (m) ≡ 0 mod
(
x
(0)
1 , . . . , x

(ν∗
1−1)

1 , x
(0)
2 , . . . , x

(ν∗
2−1)

2 , z(0), . . . , z(⟨ν
∗,γ⟩)).

To �nish we have to prove that given ν, ν′ ∈ Fm with ν ≤ ν′ we have that
Cν′

m * Cν
m. Notice that the only choice is that ν ∈ B<

m, while ν′ ∈ Am∪Bm.
First consider ν ∈ B<

m and ν′ ∈ Bm. By the de�nition of ≤m we have
that ν1 ̸= ν′1 and ν2, ν

′
2 < n (since ν ∈ N if and only if ν − (0, n) ∈ N). By

Lemma 4.10,

Codim(Cν
m)− Codim(Cν′

m ) = ⟨ν′ − ν, nγ − γ − (1, 1)⟩

= (ν′1 − ν1)
an−a−n

n − (ν′2 − ν2)
1
n

and we have Codim(Cν
m) − Codim(Cν′

m ) ≥ 0 since
ν′
2−ν2

n < 1, ν′1 − ν1 > 0

and an−a−n
n ≥ 0, and Codim(Cν

m)− Codim(Cν′

m ) is an integer.
Suppose now that ν′ ∈ Am. By the inequality above it is enough to

prove that Cν′

m * Cν
m for ν ∈ B<

m with ν2 maximal. Then ν′2 − ν2 ≤ n. If
ν′ = (ν1, 0) then ν = (ν1, 0) and the proof goes as in case (ii). Otherwise
ν′ − (1, 0) /∈ Am ∪Bm, and then ⟨ν′ − (1, 0), nγ⟩ ≤ m, therefore

⟨ν′, nγ⟩ = m+ 1

since ν′ ∈ Am. We have

Codim(Cν
m)− Codim(Cν′

m ) = ⟨ν′ − ν, nγ − γ − (1, 1)⟩+ 1

= (ν′1 − ν1)
an−a−n

n − (ν′2 − ν2)
1
n + 1

(iv) If γ = ( an ,
b
n ) with b > 1, we have

Am = {ν ∈ σSing ∩ [0,m]2 ∩N0 | aν1 + bν2 > m}

Bm = {ν ∈ σSing ∩ [0,m]2 ∩N | aν1 + bν2 ≤ m}
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If ν, ν′ ∈ Am ∪B=
m we have that Cν′

m ⊆ Cν
m if and only if ν ≤ ν′, as in the

other cases. Moreover, since σReg,1 = {0}, we have

min≤m
B<

m = B<
m.

For any ν, ν′ ∈ B<
m with ν ≤ ν′, we have

(13) Codim(Cν
m)−Codim(Cν′

m ) = (ν′1−ν1)
an− a− n

n
+(ν′2−ν2)

bn− b− n

n
≥ 0,

since an ≥ a+ n and bn ≥ b+ n. Hence Cν′

m * Cν
m.

We still have to prove that for ν ∈ B<
m and ν′ ∈ min≤mAm ∪ B=

m with
ν ≤ ν′,

Codim(Cν
m)− Codim(Cν′

m ) ≥ 0.

Note that, by equation (13), it is enough to prove it for ν ∈ B<
m maximal

with respect to ≤m. We set m0 := ⟨ν, nγ⟩ < m. We have that ν ∈ B=
m0

and (
π−1
m0+1,m0

(Cν
m0

)
)
red

= Cν
m0+1 ∪ C

ν+(1,0)
m0+1 ∪ C

ν+(0,1)
m0+1

where

Codim
(
Cν

m0+1

)
= Codim

(
C

ν+(1,0)
m0+1

)
= Codim

(
C

ν+(0,1)
m0+1

)
Since we have

Cν
m = V

(
Jν , F (m0), . . . , F (m)

)
∩ {x(ν1)

1 ̸= 0} ∩ {x(ν2)
2 ̸= 0}

then

Codim
(
Cν

m

)
= ν1 + ν2 + ⟨ν, γ⟩+m−m0 + 1 = Codim

(
Cν

m0

)
+m−m0.

The component associated to ν′ (i.e. Cν′

m ) must come from either ν+(1, 0)
or ν + (0, 1) (or even both). More precisely, when lifting the component,

say C
ν+(1,0)
m0 , to higher levels we will pass from ν+(1, 0) to ν′ as follows, if

we set m1 := m0 + 1 and ν(1) := ν + (1, 0),

Cν(1)

m1
−→ Cν(2)

m2
−→ · · · −→ Cν(r)

mr

with mr = m and ν(r) = ν′,

m0 + 1 = m1 < m2 < · · · < mr = m

and

ν(i) ∈ Ami .

Moreover we have

Codim
(
Cνi

mi

)
= Codim

(
Cν(i−1)

mi−1

)
+ 1

Here we use that ν is maximal in B<
m and ν′ minimal in Am ∪ B=

m, and
therefore there may not exists ν̃ ∈ Bm such that

ν ≤ ν̃ ≤ ν′



32 H. COBO AND H. MOURTADA

Hence

Codim
(
Cν′

m

)
≤ Codim

(
C

ν+(1,0)
m0+1

)
+m−m0 − 1

= Codim
(
Cν

m0+1

)
+m−m0 − 1

= Codim
(
Cν

m0

)
+m−m0

= Codim
(
Cν

m

)
�

Remark 4.15. This result is to be compared with the case of plane curves with
one characteristic pair studied in [24] (Corollary 4.4), and with the case of An�
singularities studied in [26].

Remark 4.16. If γ =
(
1
n ,

1
n

)
we have just proved that

(
π−1
m (XSing)

)
red

=


∪

ν∈◦
σ,ν1+ν2=m+1

Cν
m if m < n

∪
ν∈◦

σ,ν1+ν2=n
Cν

m if m ≥ n

that is, the number of irreducible components of
(
π−1
m (XSing)

)
red

is m if m < n and

n − 1 otherwise. In particular, observe that this number stabilizes. If γ ̸=
(
1
n ,

1
n

)
,

the cardinal of Fm does not stabilize.

4.1. The graph. As we pointed out in Remark 4.15, the result in Theorem 4.14
has to be compared with some particular cases in [24] and in [26]. In those papers
it was proved that the structure of the jet schemes determines the topological type
of the singularity. We devote this section to prove the same result, for any q.o.
surface with only one characteristic exponent.

De�nition 4.17. We construct a graph Γ by representing each irreducible com-
ponent of

(
π−1
m (XSing)

)
red

by a vertex Vi,m, and joining two vertices Vi,m and
Vj,m+1 if πm+1,m induces a map between the corresponding irreducible components
(see De�nition 5.34 for the general de�nition). We weight the graph by giving the
embedding dimension (e) and the codimension (c) of any component. Then a vertex
at level m is denoted by Vm(e, c).

We say that there is a splitting in the graph at level m whenever there is more
that one vertex at level m projecting to the same vertex Vm−1(e, c) at level m−1. If
e+ c = 3m then we say that the splitting is of �rst type, and otherwise the splitting
is of second type.
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Remark 4.18. Notice that if Cν
m is a component of

(
π−1
m (XSing)

)
red

such that(
π−1
m+1,m(Cν

m)
)
red

is reducible, there is a splitting only if the components of the

lifting
(
π−1
m+1,m(Cν

m)
)
red

are also components of
(
π−1
m+1(XSing)

)
red

.

For instance, let f = z5−x3
1x2 be the q.o. polynomial with exponent γ =

(
3
5 ,

1
5

)
.

At level m = 3 we have(
π−1
3 (XSing)

)
red

= V
(
x
(0)
1 , x

(1)
1 , z(0)

)
∪ V

(
x
(0)
1 , x

(0)
2 , z(0)

)
= C

(2,0)
3 ∪ C

(1,1)
3 ,

and
(
π−1
4,3(C

(1,1)
3 )

)
red

= V
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , z(0)

)
∪ V

(
x
(0)
1 , x

(0)
2 , x

(1)
2 , z(0)

)
= C

(2,1)
4 ∪

C
(1,2)
4 . But this does not correspond to a splitting in Γ, since

(
π−1
4,3(C

(2,0)
3 )

)
red

=

V
(
x
(0)
1 , x

(1)
1 , z(0)

)
= C

(2,0)
4 and C

(2,1)
4 ⊆ C

(2,0)
4 . Therefore(

π−1
4 (XSing)

)
red

= C
(2,0)
4 ∪ C

(1,2)
4 .

We prove next how these splittings permit to extract information about the
q.o. singularity, more concretely, about the characteristic exponent.

Lemma 4.19. Let Γ be the graph describing the jet schemes through the singular
locus of a q.o. surface with one normalized characteristic exponent

(
a
n ,

b
n

)
.

(i) If there are splittings where three vertices at level m+1 project into a vertex
at level m, then b > 1.

(ii) Otherwise b ∈ {0, 1} and we have the following possibilities.
(ii.a) If every splitting is of �rst type, then a = b = 1.
(ii.b) If every splitting is of second type then either we have b = 0 or we

have b = 1 and n divides a.
(ii.c) If there are both types of splittings then b = 1 and n does not divide a.

Proof. First note that if Γ is the graph describing the jets through the singular
locus of a q.o. surface with one normalized exponent γ, then in Γ there must be
splittings. Indeed, it follows by Remark 4.16. Suppose �rst that γ =

(
1
n ,

1
n

)
, then

at level m = 1 there is only one irreducible component V
(
x
(0)
1 , x

(0)
2 , z(0)

)
, and for

m big enough there are n ≥ 2 irreducible components. When γ ̸=
(
1
n ,

1
n

)
we have

one or two irreducible components at level m = 1 and the number of components
is not bounded as m grows.

Note also that with the data of the weights we can deduce that the vertex
Vm(e, c) corresponds either to a component Cν

m with ν ∈ Am (if e+ c = 3(m+ 1))
or ν ∈ Bm (otherwise). Hence we can also de�ne the types of splittings as follows,
if there is a splitting at level m projecting to a vertex Vm−1(e, c) corresponding to
the component Cν

m−1, we have:

• splitting of the �rst type if and only if ν ∈ Am−1,

• splitting of the second type if and only if ν ∈ Bm−1.
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First we prove that if a ≥ b > 1 there are always splittings (necessarily of
second type) where three vertices project into one vertex of the graph. Later we
will see that this only occurs in this case. Since the relation ≤m on B<

m in this case
is ν ≤m ν′ if and only if ν = ν′, we deduce that for m big enough, there exists
ν ∈ B<

m (and therefore ν ∈ Fm) of the form ν = (ν1, 0). Set m0 = ⟨ν, nγ⟩, then
ν ∈ B=

m0
and

π−1
m0+1,m0

(
Cν

m0

)
= Cν

m0+1 ∪ C
ν+(1,0)
m0+1 ∪ C

ν+(0,1)
m0+1

We clearly have ν ∈ Fm0+1, and the question is whether ν + (1, 0) and ν + (0, 1)
belong to Fm0+1 or not, to know whether we have a true splitting or not (see
Remark 4.18). We have that ν + (1, 0), ν + (0, 1) ∈ Am0+1, since

⟨ν + (1, 0), nγ⟩ = m0 + a > m0 + 1

⟨ν + (0, 1), nγ⟩ = m0 + b > m0 + 1

Moreover we have that ν+(0, 1) ∈ Fm0+1 since there is no ν′ ∈ Am0+1 with ν′ ≤ ν
because ν = (ν1, 0), and there is no ν′ = (ν′1, 0) ∈ B=

m0+1 with ν′1 < ν1, since this
would contradict that ν ∈ B=

m0
. To �nish we have to prove that ν+(0, 1) ∈ Fm0+1.

Suppose there exits r > 0 such that ν′′ = ν + (0, 1)− (r, 0) ∈ Am0+1 ∪B=
m0+1 (this

would imply that C
ν+(0,1)
m0+1 ⊆ Cν′′

m0+1), then

m0 + b− ra ≥ m0 + 1

or equivalently b ≥ ra+ 1, which is impossible if r > 0.

To study the splittings at level m + 1, we have to study the irreducibility of
π−1
m+1,m(Cν

m) with ν ∈ Fm ⊆ Am ∪Bm. We distinguish cases:

(i) If ν ∈ Fm ∩Am, we have the following possibilities.

(a) If m+ 1 < ⟨ν, nγ⟩, then ν ∈ Am+1, and

π−1
m+1,m(Cν

m) = Cν
m+1 irreducible

Indeed, by de�nition Cν
m = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
.

Then

π−1
m+1,m(Cν

m) = V
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n]), F (m+1)

)
where

F (m+1) mod
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
≡

≡

 z([m/n]+1)n if m+ 1 ≡ 0 mod n

0 otherwise

since m+1 < ⟨ν, nγ⟩. Notice that if m+1 ≡ 0 mod n then [mn ] + 1 =
m+1
n .
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(b) If m+ 1 = ⟨ν, nγ⟩ and ν ∈ N , then ν ∈ B=
m+1 and

π−1
m+1,m(Cν

m) = Cν
m+1 irreducible

since π−1
m+1,m(Cν

m) = V
(
Jν , F (m+1)

)
and by Lemma 4.5 we have

F (m+1) ≡ F (m+1)
ν mod

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1)

)
where F

(m+1)
ν is an irreducible polynomial.

(c) If m+ 1 = ⟨ν, nγ⟩ and ν /∈ N , then ν /∈ Am+1 ∪Bm+1 and

(
π−1
m+1,m(Cν

m)
)
red

=

 is reducible (i.e. splitting) if b ̸= 0

is irreducible otherwise

Indeed, �rst note that[
m+ 1

n

]
=
[m
n

]
= [⟨ν, γ⟩]

We have that

π−1
m+1,m(Cν

m) = V
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n]), F (m+1)

)
,

and, by Lemma 4.5

F (m+1) ≡ F (m+1)
ν mod

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
where

F (m+1)
ν = −x(ν1)

1

a
x
(ν2)
2

b
· U

where U is a unit inRν . Therefore, whenever b ̸= 0,
(
π−1
m+1,m(Cν

m)
)
red

=

C
ν+(1,0)
m+1 ∪ C

ν+(0,1)
m+1 , and to have a splitting of �rst type we need to

argue that ν+(1, 0), ν+(0, 1) ∈ Fm+1, and the splitting is of the form
two vertices projecting to one vertex.

(ii) If ν ∈ Fm ∩B=
m, then

(
π−1
m+1,m(Cν

m)
)
red

=

 irreducible if γ = ( 1n ,
1
n )

reducible otherwise

Indeed, if γ =
(
1
n ,

1
n

)
, then

π−1
m+1,m(Cν

m) = V
(
x
(0)
1 , . . . , x

(ν1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z(⟨ν,γ⟩−1), F (m), F (m+1)

)
and by Lemma 4.7 we have that π−1

m+1,m(Cν
m) = Cν

m+1, with ν ∈ B<
m+1.

By Lemma 4.10 π−1
m+1,m(Cν

m) is irreducible.
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Suppose then that γ ̸=
(
1
n ,

1
n

)
, i.e. a > 1. Then, from Lemma 4.7 we

deduce

(
π−1
m+1,m(Cν

m)
)
red

=


Cν

m+1 ∪ C
ν+(1,0)
m+1 if b = 0, 1

Cν
m+1 ∪ C

ν+(1,0)
m+1 ∪ C

ν+(0,1)
m+1 if b > 1

Hence if b = 0, 1 we have two vertices projecting to one vertex, while if
b > 1 we have three vertices projecting to one vertex.

(iii) If ν ∈ Fm ∩B<
m, then π−1

m+1,m(Cν
m) = Cν

m+1 irreducible.

To �nish, notice that if γ =
(
a
n ,

1
n

)
and n divides a then Fm ⊆ Z×{0} and for

every ν ∈ Fm∩Am we have ν ∈ N , therefore we never have the situation described
in (c).

�

Remark 4.20. The splittings of second type at level m+ 1 correspond to the fol-
lowing situation, there is a component Cν

m with ν ∈ B=
m, such that π−1

m+1,m(Cν
m) is

reducible. Then, by de�nition, Cν
m is a singular algebraic variety, and the decom-

position of π−1
m+1,m(Cν

m) in irreducible components has one component (precisely

Cν
m+1) projecting to the regular locus of Cν

m, while the rest of the components (one
or two, depending on the singular locus of Cν

m) project to the singular locus of Cν
m.

In this situation we say that Cν
m splits at level m+ 1 through the singular locus.

Theorem 4.21. The graph Γ describing the structure of jet schemes through the
singular locus of a q.o. surface singularity with one normalized characteristic ex-
ponent λ, determines and it is determined by λ.

Proof. Recall that λ = γ. By Lemma 4.19, looking at the splittings in Γ, we
are able to distinguish the four cases:

(i) γ =
(
a
n , 0
)
or γ =

(
a
n ,

1
n

)
with a ≡ 0 mod n

(ii) γ =
(
1
n ,

1
n

)
(iii) γ =

(
a
n ,

1
n

)
with a ̸≡ 0 mod n

(iv) γ =
(
a
n ,

b
n

)
with a ≥ b > 1

Now we recover γ on each case. We will see how, roughly speaking, the split-
tings of the �rst type give information about a and b, while the splittings of the
second type give information about n. Recall that with the data of the codimension
and the embedding dimension we can deduce if a vertex Vm(c, e) corresponds to a
component Cν

m with ν ∈ Am or with ν ∈ Bm.
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(i) Case γ =
(
a
n , 0
)
or γ =

(
a
n ,

1
n

)
with a ≡ 0 mod n. At level m = 1 we

have only one vertex. Looking at its codimension as m grows, we know
that at level m = n the codimension grows for the �rst time. If this vertex
corresponds to a component Cν

m with ν ∈ Bm then it must be a = n and
then

γ =
(
1,

1

n

)
Otherwise, we have recovered the multiplicity n and we know that a > n.

If γ =
(
a
n , 0
)
with gcd(a, n) = 1, for ν = (n, 0) ∈ N and level ⟨ν, nγ⟩ =

an we have ν ∈ Fan, with

Cν
an = V

(
x
(0)
1 , . . . , x

(ν1−1)
1 , z(0), . . . , z(a−1), F (an)

)
Then at level an+ 1 we have the �rst splitting, and it splits as(

π−1
an+1,an(C

(n,0)
an )

)
red

=
(
V
(
x
(0)
1 , . . . , x

(ν1−1)
1 , z(0), . . . , z(a−1), F (an), F (an+1)

))
red

= C
(n,0)
an+1 ∪ C

(n+1,0)
an+1

We can read the number an from the graph, and since we know n, we
recover a too.

If γ =
(
a
n ,

1
n

)
with a ≡ 0 mod n, we have, for ν = (1, 0) ∈ N and level

⟨ν, nγ⟩ = a, that ν ∈ Fa, with

Cν
a = V

(
x
(0)
1 , z(0), . . . , z(⟨ν,γ⟩−1), F (a)

)
At level a+ 1 we have the �rst splitting, as follows(

π−1
a+1,a(C

ν
a )
)
red

=
(
V
(
x
(0)
1 , z(0), . . . , z(⟨ν,γ⟩−1), F (a), F (a+1)

))
red

= C
(1,0)
a+1 ∪ C

(2,0)
a+1

and we can read the number a.

Note that in both cases the �rst splitting is of second type. How do we
distinguish these two cases? We have at level m = 1 only one component
and of codimension 2. In the second case we have at level m = a − 1
only one component, of codimension ⟨ν, γ⟩ + 1 = a

n + 1 > 2. Hence we
must have jumps in codimension, but all are level m ≡ 0 mod n, more

precisely, at level m = n when passing from the component V
(
x
(0)
1 , z(0)

)
to V

(
x
(0)
1 , z(0), z(1)

)
, at level m = 2n when passing to the component

V (x
(0)
1 , z(0), z(1), z(2)

)
, and so on. However, in the case γ =

(
a
n , 0
)
we

have at level an− 1 the component C
(n,0)
an−1 of codimension n+ a > 2, and

there must jumps in codimension at certain levels m ̸≡ 0 mod n, more

precisely, when passing from C
(1,0)
m to C

(2,0)
m+1 and so on. Here it is crucial

that gcd(a, n) = 1.

(ii) Case γ =
(
1
n ,

1
n

)
. See Remark 4.16, the number of irreducible components

stabilizes at value n − 1 at level m = n − 1. Then we read easily n from
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the graph.

(iii) Case γ =
(
a
n ,

1
n

)
with a ̸≡ 0 mod n. Let us look at the �rst part of the

graph, before there is a splitting. Let m0 be the level at which we �nd the
�rst splitting. By Lemma 4.19 the splitting can be of �rst or second type.
We recover a as follows. We claim that the splitting is of �rst type and at
level m0 = a. Indeed, notice that (1, 0) /∈ N , since a ̸≡ 0 mod n. Then

C
(1,0)
a−1 = V

(
x
(0)
1 , z(0), . . . , z([

a−1
n ])
)

and

π−1
a,a−1(C

(1,0)
a−1 ) = V

(
x
(0)
1 , z(0), . . . , z([

a−1
n ]), F (a)

)
where, by Lemma 4.5,

F (a) ≡ −x(1)
1

a
x
(0)
2

(
1−

∑
caj0x

(0)
2

j−1)
mod

(
x
(0)
1 , z(0), . . . , z([

a−1
n ])
)

And since 1−
∑

caj0x
(0)
2

j−1
is a unit in C{x(0)

2 }, we deduce that at level a
there is a splitting

π−1
a,a−1(C

(1,0)
a−1 ) = C(2,0)

a ∪ C(1,1)
a

of �rst type.

We still have to �nd the value of n from the graph. Notice that, since
XSing = {x1 = z = 0} irreducible, and since a > n, we have that(
π−1
m (XSing)

)
red

= V
(
x
(0)
1 , z(0)

)
for 1 ≤ m < n, and

(
π−1
n (XSing)

)
red

=

V
(
x
(0)
1 , z(0), z(1)

)
. Therefore the number n is the �rst time in the graph

where the codimension grows.

(iv) Case γ =
(
a
n ,

b
n

)
with a ≥ b > 1.

It is clear that a = b if and only if the graph is symmetric. Suppose we
have a = b, then gcd(a, n) = 1, and, as in the previous cases, the �rst time
we have a jump in codimension without splittings, is necessarily at level n.
While the �rst splitting is at level a = b.

Suppose now that a > b. First we recover the multiplicity n. At level
m = n it is the �rst time in the graph that we have a jump in codimension
in all components at this level (there might be more than two components
if a < n). Indeed, at level m = n there must be a jump in every component

since z(1)
n
appears in F (m). Of course, there might be jumps in codimen-

sion in previous components, but since b ̸= a, there may not be in every
component.

Now we will distinguish in which component the graph projects to
{x = z = 0} and which to {y = z = 0} (recall that in this case the
singular locus of X is reducible and has two components, therefore the

graph has two components, one describing the lifting of V
(
x
(0)
1 , z(0)

)
and
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the other describing the lifting of V
(
x
(0)
2 , z(0)

)
). Again, it is crucial that

b < a. At level m = 1 we have in both components one vertex and with
codimension 2. The �rst time that this situation changes (meaning, at least
one component either splitts or its codimension jumps), must occur in the

branch projecting to {z(0) = x
(0)
2 = 0} and at level m = b (if the splitting

is of �rst type, or if there is a jump in codimension) or at level m+ 1 = b
(if the splitting is of second type).

Looking at the other component of the branch, we recover analogously,
the number a.

�

We end this section with a couple of examples illustrating the previous result.
We will draw an arrow in the graph at level m0, when a component associated
with certain ν, gives rise to a component for every m ≥ m0, i.e., ν ∈ Fm for every
m ≥ m0.

Example 4.22. Consider the graph Γ drawn in Figure 2, representing the structure
of m-jet schemes through the singular locus of a q.o. singularity. Recall that the
vertices are weighted with e the embedded dimension and c the codimension.

m = 1 • (4, 2)

m = 2 • (7, 2)

m = 3 • (9, 3)

m = 4 • (12, 3)@@ ��
m = 5 (14, 4) • • (14, 4) Splitting of �rst type

m = 6 (16, 5) • • (17, 5)

m = 7
↗

(19, 5) •
m = 8 (22, 5) •
m = 9 (24, 6) •
m = 10

@@ ��
•(26, 7) • (26, 7) Splitting of �rst type

m = 11 (29, 7) • (28, 8)•
m = 12 (31, 8) • (30, 9)•
m = 13

↗
(34, 8) •

m = 14 (37, 8) •
m = 15 (39, 9) •
m = 16

↗
(41, 10) • Splitting of second type

m = 17 •

...

Figure 2. The graph of the irreducible components of jets
through the singular locus of a q.o. surface singularity.
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Since there are splittings of both types, but it never happens that one component
splits into three components, we deduce that γ =

(
a
n ,

1
n

)
with a > n. The �rst

splitting is of �rst type at level m = 5, hence a = 5. To compute n it is enough to
�nd the �rst time we have a jump in the codimension. Therefore we have

γ =
(5
3
,
1

3

)
.

Example 4.23. In Figure 3 the graph associated with the jet schemes of a q.o.
singularity is drawn. Since the graph is more complicated than the one in the
previous example, we will only decorate it with the codimension, but instead we
will say the type of splitting whenever there is one (recall that for this we use
the embedding dimension). Let us recover the data of the characteristic exponent.
There are splittings of second type where three vertices at level m project into one

m = 1 2 • • 2

m = 2 2 • • 3

m = 3 2 • • 3

m = 4 2 • • 4

m = 5 2 • • 4

m = 6 3 • • 5

m = 7 3 • • 6
↗

Splitting of second type

m = 8 3 • • 7

m = 9 4 • • 4 • 7
@@ ��

Splitting of �rst type

m = 10 4 • • 4 • 8

m = 11 4 • • 5 • 8

m = 12 5 • • 6 • 9

m = 13 5 • • 7 • 10
↗

Splitting of second type

m = 14 5 • • 7 • 11

m = 15 5 • • 8 • 11

m = 16 5 • • 8 • 12

m = 17 5 • • 9 • 12

m = 18 6 • • 10 • 13

m = 19 7 • 7 • • 11 • 14

HHH ↗ ↗
Two splittings of second type

...
...

...
...

Figure 3. The graph of the irreducible components of jets
through the singular locus of a q.o. surface singularity, decorated
only with the codimension.
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vertex at level m − 1 (we can see one at level 19 in Figure 3). Therefore the
characteristic exponent is of the form γ =

(
a
n ,

b
n

)
with a ≥ b > 1. Since the graph

is obviously asymmetric, we deduce that a > b.

The multiplicity is n = 6 because at level 6 we can see the �rst jump in codi-
mension in all components. Since the �rst jump in codimension is at level m = 2
and only in one of the components of the graph, we deduce that b = 2, because
b < a. Now, we recover a looking at the �rst splitting in the other component of the
graph, it occurs at level m = 9 and it is a splitting of �rst type, therefore a = 9, and
the graph represented in Figure 3 describes the structure of irreducible components
through the singular locus of a q.o. surface with characteristic exponent

γ =
(9
6
,
2

6

)
.

5. Jet schemes of quasi-ordinary surface singularities: the general

case

We generalize the results of the previous section to the case of any number of
characteristic exponents. Let X be a q.o. surface de�ned by a polynomial f with
g characteristic exponents. We describe the decomposition of

(
π−1
m (XSing)

)
red

in
irreducible components as(

π−1
m (XSing)

)
red

= ∪ν∈FmCν
m

analogously as for the case of one characteristic exponent. First we will de�ne the
candidates Cν

m, we prove its irreducibility and �nally study the inclusions among
them, to de�ne the set Fm.

Let us look �rst at some examples.

Example 5.1. Consider the q.o. surface X de�ned by f = (z2 − x3
1)

3 − x10
1 x4

2.
The generators of the semigroup are γ1 = ( 32 , 0) and γ2 = ( 103 , 4

3 ), and the singular

locus is XSing = {x1 = z = 0} ∪ {x2 = z2 − x3
1 = 0}. Let us look at the component

Z2 = {x2 = z2 − x3
1 = 0} of the singular locus. If we lift Z2 to level m we have

π−1
m (Z2) = V

(
x
(0)
2 , z(0)

2
− x

(0)
1

3
, F (1), . . . , F (m)

)
since F (0) =

(
z(0)

2 − x
(0)
1

3)3 − x
(0)
1

10
x
(0)
2

4
≡ 0 mod

(
x
(0)
2 , z(0)

2 − x
(0)
1

3)
. This last

congruence is easier to handle if we use the �rst approximated root f1 = z2 − x3
1.

It is clear that we can write

F (0) = F
(0)
1

3
− x

(0)
1

10
x
(0)
2

4
≡ 0 mod

(
x
(0)
2 , F

(0)
1

)
.

What it is not that clear is that

F (1) = 3F
(0)
1

2
F

(1)
1 − 10x

(0)
1

9
x
(1)
1 x

(0)
2

4
− 4x

(0)
1

10
x
(0)
2

3
x
(1)
2 .
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In the example above we are, roughly speaking, considering f1 as a variable in
the expansion of f :

f = f1
3 − x10

1 x4
2

Let us formalize this idea. Consider the following embedding of A3 in A3+g with
coordinates (x, u0, . . . , ug). The embedding is de�ned in terms of the semi-roots as
follows. Let us denote, for 0 ≤ j ≤ g − 1 (see Lemma 3.11),

hj = −uj+1 + uj
nj+1 − cj+1x

α(j+1)

u
r
(j+1)
1

0 · · ·ur
(j+1)
j

j−1 +
∑

c(j+1)
α,r xαur1

0 · · ·u
rj+1

j

We can embed A3 in A3+g as V (h0, . . . , hg−1), and, if we set hg = ug, then (see
[17]) the embedding of X in A3+g is de�ned by

V (h0, . . . , hg)

We abuse of notation and denote by X the embedding of our q.o. surface in A3+g.
Note that we are not dealing with a hypersurface anymore. The jet scheme Xm is
now de�ned by

Xm = Spec

(
C{x(0)

1 , x
(0)
2 }[x

(1)
i , . . . , x

(m)
i , u

(0)
0 , . . . , u

(m)
0 , . . . , u

(0)
g , . . . , u

(m)
g ]i=1,2(

H
(0)
0 , . . . , H

(m)
0 ,H

(0)
1 , . . . , H

(m)
1 , . . . ,H

(0)
g , . . . , H

(m)
g

) )
We denote, for 0 ≤ j ≤ g − 1, qj+1 ∈ C{x1, x2}[u0, . . . , uj ] such that

hj = −uj+1 + qj+1(x1, x2, u0, . . . , uj)

holds. Then (recall notations in Section 2, where we used capital letters for poly-
nomials, but not for variables) we have that, for 0 ≤ j < g and l ≥ 0

H
(l)
j = −u(l)

j+1 +Q
(l)
j+1

Consider the ring

R
(l)
j = C{x(0)

1 , x
(0)
2 }[x

(1)
1 , . . . , x

(l)
1 , x

(1)
2 , . . . , x

(l)
2 , u

(0)
0 , . . . , u

(l)
0 , . . . , u

(0)
j , . . . , u

(l)
j ]

for 0 ≤ j ≤ g and l ≥ 0. We can identify R
(l)
0 with R(l) (see Section 2). Since

the elements Q
(l)
j belong to the ring R

(l)
j , it makes sense to de�ne the following

evaluation map de�ned by giving suitable values to the variables:

evj : C{x1, x2}[u0, . . . , uj ] −→ C{x1, x2}[z]

xi 7→ xi, for i = 1, 2

ui 7→ fi, for i = 0, . . . , j

(recall that f0 = z), and at the level of jets:

ev
(m)
j : R

(m)
j −→ R(m)

x
(l)
i 7→ x

(l)
i , for i = 1, 2 and 0 ≤ l ≤ m

u
(l)
i 7→ F

(l)
i , for i = 0, . . . , j and 0 ≤ l ≤ m
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We have then the following result.

Lemma 5.2. For 0 ≤ j ≤ g and 0 ≤ l ≤ m

F
(l)
j = ev

(m)
j

(
Q

(l)
j

)
.

This permits to describe the equations of the jets using derivations and con-
sidering the approximated roots as variables, as illustrated in Example 5.1.

Remark 5.3. As Corollary 2.2 shows the linearity of equations

F
(l)
i

(
x
(0)
1 , . . . , x

(l)
1 , x

(0)
2 , . . . , x

(l)
2 , z(0), . . . , z(l)

)
in x

(l)
1 , x

(l)
2 and z(l), by Lemma 5.2 we deduce the linearity of

F
(l)
i

(
x
(0)
1 , . . . , x

(l)
1 , x

(0)
2 , . . . , x

(l)
2 , z(0), . . . , z(l), F

(0)
1 , . . . , F

(l)
1 , . . . , F

(0)
i−1, . . . , F

(l)
i−1

)
in x

(l)
1 , x

(l)
2 , z(l), F

(l)
1 , . . . , F

(l)
i−1, meaning that they appear in F

(l)
i with exponent one.

Example 5.4. We continue with Example 5.1. If we lift the component of the
singular locus

Z2 = {x2 = f1 = 0}
at level 3, we have that

π−1
3 (Z2) = π−1

3

(
V (x

(0)
2 , F

(0)
1 )

)
= V

(
x
(0)
2 , F

(0)
1 , F (1), F (2), F (3)

)
,

where F
(0)
1 = z(0)

2 − x
(0)
1

3
. We can easily check that

F (1) = 3F
(0)
1

2
F

(1)
1 − 10x

(0)
1

9
x
(1)
1 x

(0)
2

4
− 4x

(0)
1

10
x
(0)
2

3
x
(1)
2

≡ 0 mod
(
x
(0)
2 , F

(0)
1

)
F (2) = 2F

(0)
1

2
F

(2)
1 + F

(0)
1 F

(1)
1

2
+ · · ·

≡ 0 mod
(
x
(0)
2 , F

(0)
1

)
F (3) ≡ F

(1)
1

3
mod

(
x
(0)
2 , F

(0)
1

)
,

and then
(
π−1
3 (Z2)

)
red

= V
(
x
(0)
2 , F

(0)
1 , F

(1)
1

)
. Notice that it is not irreducible.

Indeed, it decomposes as(
π−1
3 (Z2)

)
red

= π−1
3,2

(
Sing(V

(
x
(0)
2 , F

(0)
1

)
)
)∪

π−1
3,2

(
Reg(V

(
x
(0)
2 , F

(0)
1

)
)
)

= V
(
x
(0)
1 , x

(0)
2 , z(0)

)∪
V
(
x
(0)
2 , F

(0)
1 , F

(1)
1

)
∩ {x(0)

1 ̸= 0}

But, since V
(
x
(0)
1 , z(0)

)
is an irreducible component projecting to Z1 = {z = x1 =

0} and we have that V
(
x
(0)
1 , x

(0)
2 , z(0)

)
⊆ V

(
x
(0)
1 , z(0)

)
, we deduce that is not an

irreducible component of
(
π−1
3 (XSing)

)
red

.
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Let us denote by C3 the component V
(
x
(0)
2 , F

(0)
1 , F

(1)
1

)
∩ {x(0)

1 ̸= 0}, and set

C4 :=
(
π−1
4,3(C3)

)
red

. We have that C4 is irreducible, because

C4 = V
(
x
(0)
2 , F

(0)
1 , F

(1)
1 , F (4)

)
∩ {x(0)

1 ̸= 0},
with

F (4) ≡ −x(1)
1

10
x
(1)
2

4
mod

(
x
(0)
2 , F

(0)
1 , F

(1)
1

)
and hence C4 = V

(
x
(0)
2 , x

(1)
2 , F

(0)
1 , F

(1)
1

)
∩ {x(0)

1 ̸= 0}. With the same arguments it
is not di�cult to see that if we lift to level 12, we have

C12 :=
(
π−1
12,3(C3)

)
red

= V
(
x
(0)
2 , x

(1)
2 , x

(2)
2 , F

(0)
1 , F

(1)
1 , F

(2)
1 , F

(3)
1 , F (12)

)
∩ {x(0)

1 ̸= 0}
where

F (12) ≡ F
(4)
1

3
− x

(0)
1

10
x
(3)
2

4
mod

(
x
(0)
2 , x

(1)
2 , x

(2)
2 , F

(0)
1 , F

(1)
1 , F

(2)
1 , F

(3)
1

)
Then C12 is irreducible, since F

(4)
1

3
−x

(0)
1

10
x
(3)
2

4
is irreducible, but if we lift to next

level, we have that(
π−1
13,12(C12)

)
red

= V
(
x
(0)
2 , x

(1)
2 , x

(2)
2 , F

(0)
1 , F

(1)
1 , F

(2)
1 , F

(3)
1 , F (12), F (13)

)
∩ {x(0)

1 ̸= 0},
which is not irreducible, since it splits through the singular locus of the variety

V
(
x
(0)
2 , x

(1)
2 , x

(2)
2 , F

(0)
1 , F

(1)
1 , F

(2)
1 , F

(3)
1 , F (12)

)
. Then

(
π−1
13,12(C12)

)
red

= C13 ∪ C ′
13,

where

C13 = V
(
x
(0)
2 , . . . , x

(3)
2 , F

(0)
1 , . . . , F

(4)
1

)
∩ {x(0)

1 ̸= 0}

C ′
13 = V

(
x
(0)
2 , x

(1)
2 , x

(2)
2 , F

(0)
1 , . . . , F

(3)
1 , F (12), F (13)

)
∩ {x(0)

1 ̸= 0} ∩ {x(3)
2 ̸= 0}

To formalize all the ideas illustrated in the examples we need to introduce
some notation.

De�nition 5.5. For ν ∈ σ ∩N0 and m ∈ Z≥0 we de�ne the ideal

Jν
m = Rad

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , F (0), . . . , F (m)

)
.

For convenience we set

Jν
−1 =

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2

)
Moreover we de�ne the integer j(m, ν) ∈ {0, . . . , g}, de�ned by the inequalities

⟨ν, ej−1γj⟩ ≤ m < ⟨ν, ejγj+1⟩,
and the integer j′(m, ν) ∈ {−1, 0, . . . , j(m, ν)} de�ned by

⟨ν, ej−1γj⟩+ ej ≤ m < ⟨ν, ejγj+1⟩+ ej+1,

where we have to set

γ−1 := (0, 0), e−1 := 0, e−2 := 0

Recall that we convey γg+1 =∞.
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We denote by D(h) the open set

D(h) = Spec Rh

where R is the ring R = C{x(0)
1 , x

(0)
2 }[x

(j)
1 , x

(j)
2 , z(0), z(j)]j>0. Recall that, for l > 0

we denote by R(l) the subring R(l) = C{x(0)
1 , x

(0)
2 }[x

(j)
1 , x

(j)
2 , z(0), z(j)]0<j≤l.

We need to introduce the arti�cial notation of γ−1, e−1 and e−2 to be able to
de�ne j′(m, ν) = −1, which will cover the range 0 ≤ m < n for any ν. Now, for
any ν and m, the integers j(m, ν) and j′(m, ν) are de�ned.

With the de�nition of the integer j′(m, ν) we can write in a compact form, the
relation ≤m given in De�nition 4.12, for the case of one characteristic exponent, as

ν ≤m ν′ if and only if ν′ − ν ∈ σReg,j′(m,ν),

because if g = 1, we have that:

• ν ∈ Am ∪B=
m is equivalent to j′(m, ν) ≤ 0

• ν ∈ B<
m is equivalent to j′(m, ν) = 1

We are going to prove that this is the relation that controls the inclusions
among the candidates Cν

m to be irreducible components also in the general case,
but the proof is much more involved. First we have to de�ne the candidates to be
the irreducible components.

De�nition 5.6. For m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩N0 we set (recall Remark
2.5)

Dν
m =


V (Jν

m) if σReg,j′(m,ν) = ρ1 ∪ ρ2

V (Jν
m) ∩D(x

(ν1)
1 ) if σReg,j′(m,ν) = ρ2

V (Jν
m) ∩D(x

(ν1)
1 ) ∩D(x

(ν2)
2 ) if σReg,j′(m,ν) = {(0, 0)}

where j′ = j′(m, ν). Moreover we de�ne Cν
m = Dν

m its Zariski closure.

Note that Dν
m is reduced since the ideals Jν

l are radical.

With these sets Cν
m we can cover

(
π−1
m (XSing)

)
red

. Indeed, given a jet γ ∈ Xm,

if xi ◦γ ̸= 0 for i = 1, 2, the vector ν =
(
ordt(x1 ◦γ), ordt(x2 ◦γ)

)
belongs to σ∩N0

and 0 ≤ νi ≤ m. Moreover it is clear that γ ∈ Dν
m ⊆ Cν

m, and we deduce

Xm =
∪

ν∈σ∩[0,m]2∩N0

Cν
m,

where [0,m] denotes the closed interval, and [0,m]2 the square [0,m]× [0,m]. We
are interested in m-jets with origin at the singular locus, and this introduces some
constraints in the possible values of ν.
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Lemma 5.7. Form ∈ Z>0 we have that
(
π−1
m (XSing)

)
red

=
∪

ν∈σSing∩[0,m]2∩N0
Cν

m.

Proof. Given γ(t) ∈
(
π−1
m (XSing)

)
red

, suppose �rst that xi ◦ γ(t) ̸= 0 for

i = 1, 2. Then we de�ne ν :=
(
ordt(x1 ◦ γ(t)), ordt(x2 ◦ γ(t))

)
∈ [0,m]2 ∩ N0 and

obviously γ(t) ∈ Dν
m ⊆ Cν

m. We have to prove that ν ∈ σSing∩N0, and this follows
easily from De�nition 3.17, by distinguishing cases.

Now we deal with the other cases. If xi ◦ γ(t) = 0 for i = 1, 2, then γ(t) ∈ Cν
m

for any ν ∈ σSing ∩N0 with 0 ≤ νi ≤ m for i = 1, 2.

If x1 ◦γ(t) = 0 and x2 ◦γ(t) ̸= 0, then we denote α := ordt(x2 ◦γ(t)). We have
0 ≤ α ≤ m, and γ(t) ∈ Cν

m for any ν ∈ σSing ∩N0, with 0 ≤ νi ≤ m for i = 1, 2,
and ν2 ≤ α.

The left case x1 ◦ γ(t) ̸= 0 and x2 ◦ γ(t) = 0 is analogous to the last one.

We prove the other inclusion. If γ(t) ∈ Xm \ π−1
m (XSing), then γ(0) /∈ XSing.

Again distinguishing cases depending on the singular locus, we can prove that
ν =

(
ordt(x1 ◦ γ(t)), ordt(x2 ◦ γ(t))

)
/∈ σSing. �

The examples at the beginning of this section together with the discussion in
Section 4 for the case of one characteristic exponent, illustrate that the main point
is to study carefully the equations de�ning the m-jets. More concretely, we have
to study

F (l) mod Jν
l−1

for ν ∈ σSing ∩ [0,m]2 ∩N0 and l ≥ 0.

We have seen in the examples how the semi-roots fi appear in the sequence
F (0), . . . , F (m) modulo the ideal Jν

m−1. By de�nition

F
(l)
i ∈ R(l) = C{x(0)

1 , x
(0)
2 }[x

(1)
k , . . . , x

(l)
k , z(0), . . . , z(l)]k=1,2.

However, by Lemma 3.11 and Lemma 5.2, we can see F
(l)
i as an element in

C{x(0)
1 , x

(0)
2 }[x

(1)
k , . . . , x

(l)
k ]k=1,2[F

(0)
r , . . . , F (l)

r ]0≤r<i.

De�nition 5.8. For ν ∈ σSing ∩N0 and l ∈ Z≥0, we de�ne F
(l)
0,ν = F

(l)
0 , and, for

1 ≤ i ≤ g we de�ne, by recurrence, F
(l)
i,ν as the polynomial F

(l)
i once we set

x
(0)
k = · · · = x

(νk−1)
k = 0, k = 1, 2,

F
(rj)
j,ν = 0 for 0 ≤ j < i and 0 ≤ rj < ⟨ν, γj+1⟩.

By de�nition we have

F
(l)
i ≡ F

(l)
i,ν mod

(
Jν
−1, F

(rj)
j,ν

)
0≤j<i, 0≤rj<⟨ν,γj+1⟩

(14)
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Let us study carefully the polynomials F
(l)
i,ν , since they are the interesting

equations in Jν
m, the de�ning equations of the sets Cν

m. The next result is the
generalization of Lemma 4.5 to the case of g ≥ 1 characteristic exponents.

Lemma 5.9. For any ν ∈ σSing ∩N0 and 1 ≤ i ≤ g, we have that

F
(l)
i,ν = 0 for 0 ≤ l < ⟨ν, niγi⟩.

For l ≥ ⟨ν, niγi⟩, the polynomial F
(l)
i,ν is non-zero and quasi-homogeneous of degree

l. More precisely, for l = ⟨ν, niγi⟩ we have the following description of F
(⟨ν,niγi⟩)
i,ν .

(i) If ν ∈◦
σ, then, for 1 ≤ i ≤ i(ν), the polynomial F

(⟨ν,niγi⟩)
i,ν is

F
(⟨ν,γi⟩)
i−1,ν

ni

− cix
(ν1)
1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

, if i < i(ν)

−ci(ν)x
(ν1)
1

α
(i(ν))
1

x
(ν2)
2

α
(i(ν))
2

F
(⟨ν,γ1⟩)
0,ν

r
(i(ν))
1 · · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2,ν

r
(i(ν))

i(ν)−1
if i = i(ν)

(ii) If ν ∈ ρ1 ∪ ρ2, the description of F
(⟨ν,niγi⟩)
i,ν is more complicated. We have,

for 1 ≤ i ≤ i(ν),
F

(⟨ν,γi⟩)
i−1,ν

ni

− cix
(ν1)
1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

+G
(⟨ν,niγi⟩))
i,ν ,

−ci(ν)x
(ν1)
1

α
(i(ν))
1

x
(ν2)
2

α
(i(ν))
2

F
(⟨ν,γ1⟩)
0,ν

r
(i(ν))
1 · · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2,ν

r
(i(ν))

i(ν)−1
+G

(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν

where, for 1 ≤ i < i(ν),

G
(⟨ν,niγi⟩)
i,ν =

∑
cα,rx

(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi⟩)

i−1,ν

ri
,

cα,r are the coe�cients appearing in the expansion of fi given in Lemma
3.11, such that

⟨ν, (α1, α2) + r1γ1 + · · ·+ riγi⟩ = ⟨ν, niγi⟩,

while when i = i(ν),

G
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν =

∑
r=(r1,...,ri(ν)−1,0)

cα,rx
(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2,ν

ri(ν)−1

,

subject to the same conditions as before. Moreover, in this case the poly-

nomial F
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν can be written as

F
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν = −ci(ν)x

(ν1)
1

α
(i(ν))
1

x
(ν2)
2

α
(i(ν))
2

F
(⟨ν,γ1⟩)
0,ν

r
(i(ν))
1 · · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2,ν

r
(i(ν))

i(ν)−1 · U

where U is a unit in Rν .
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For i > i(ν) we can sometimes describe some polynomials F
(⟨ν,niγi⟩)
i,ν .

There exists an integer r(ν) ≥ 0 (which is always 0 when ν ∈◦
σ) such that

⟨ν, ni(ν) · · ·ni(ν)+r(ν)γi(ν)⟩ = ⟨ν, ni(ν)+r(ν)γi(ν)+r(ν)⟩ < ⟨ν, γi(ν)+r(ν)+1⟩

and then, for i(ν) < i ≤ i(ν)+ r(ν) the polynomial F
(⟨ν,niγi⟩)
i,ν has the form

described above for i < i(ν).

Before proving the Lemma we illustrate the content in the next example.

Example 5.10. Let us consider the q.o. polynomial f =
(
(z2−x2

1x2)
3−x7

1x
3
2

)2−
x15
1 x17

2 , with characteristic exponents

γ1 =
(
1,

1

2

)
, γ2 =

(7
3
, 1
)
, γ3 =

(15
2
,
7

2

)
Then n1 = 2, n2 = 3 and n3 = 2. For ν = (0, 1), we have that i(ν) = 1, since
ν /∈ N1. Moreover r(ν) = 1, because

3 = ⟨ν, n1n2γ1⟩ = ⟨ν, n2γ2⟩ < ⟨ν, γ3⟩ =
7

2
We have that

F
(⟨ν,n1γ1⟩)
1,ν = F

(1)
1,ν = −x(0)

1

2
x
(1)
2

F
(⟨ν,n2γ2⟩)
2,ν = F

(3)
2,ν = F

(1)
1,ν

3
− x

(0)
1

7
x
(1)
2

3

and the polynomial F
(3)
2,ν can be written as

F
(3)
2,ν = −x(0)

1

6
x
(1)
2

3(
1 + x

(0)
1

)
with 1 + x

(0)
1 a unit in C{x(0)

1 }, as the Lemma above claims.

Notice that, despite the fact that ν ∈ ρ1 ∪ ρ2, we have G
(1)
1,ν = G

(3)
2,ν = 0. This

is due to the fact that the q.o. polynomial f is very simple, it is enough to consider
the following polynomial with the same characteristic exponents

h =
(
(z2 − x2

1x2 + 5x3
1x2)

3 − x7
1x

3
2 + 2x6

1x
3
2z
)2 − x15

1 x17
2 .

to have non-zero polynomials G
(l)
i,ν .

Proof of Lemma 5.9. For 1 ≤ i ≤ i(ν) we will use the expansion of the semi-

root fi given in Lemma 3.11. Notice that by de�nition, F
(l)
i consists of monomials

of the form

F
(a1)
i−1 · · ·F

(ani
)

i−1

x
(b1)
1 · · ·x(bα1 )

1 x
(c1)
2 · · ·x(cα2 )

2 F
(s

(0)
1 )

0 · · ·F
(s(0)r1

)

0 · · ·F (s
(i−1)
1 )

i−1 · · ·F
(s(i−1)

ri
)

i−1

with 0 ≤ a1 ≤ · · · ≤ ani ≤ l and a1 + · · · + ani = l, with 0 ≤ b1 ≤ · · · ≤ bα1 ≤ l,

0 ≤ s
(j)
1 ≤ · · · ≤ s

(j)
rj+1 ≤ l and with b1 + · · · + bα1 + c1 + · · · + cα2 + s

(0)
1 + · · · +
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s
(0)
r1 + · · ·+ s

(i−1)
1 + · · ·+ s

(i−1)
ri = l. Setting x

(l)
k = 0 and F

(rj)
j,ν = 0, as in De�nition

5.8, amounts to impose the conditions

aj ≥ ⟨ν, γi⟩

bj ≥ ν1

cj ≥ ν2

s
(k)
j ≥ ⟨ν, γk+1⟩

Then, the �rst type of monomials have order

l = a1 + · · ·+ ani ≥ ni⟨ν, γi⟩

while the second type of monomials have order

l = b1 + · · ·+ bα1 + · · ·+ · · ·+ s
(i−1)
1 + · · ·+ s

(i−1)
ri

≥ α1ν1 + α2ν2 + r1⟨ν, γ⟩+ · · ·+ ri⟨ν, γi⟩

≥ ⟨ν, niγi⟩

Hence we are left with the monomials of order ≥ ⟨ν, niγi⟩. Therefore F
(l)
i,ν = 0 for

0 ≤ l < ⟨ν, niγi⟩ as claimed.

The expression of F
(⟨ν,niγi⟩)
i,ν for i < i(ν) follows since these are the monomials

of order exactly ⟨ν, niγi⟩. For i = i(ν) we have to notice that ⟨ν, ni(ν)γi(ν)⟩ ∈ Z
but ⟨ν, γi(ν)⟩ /∈ Z, and since in F

(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν we have to set F

(r)
i(ν)−1,ν = 0 for

0 ≤ r < ⟨ν, γi(ν)⟩, the term fni
i−1 does not contribute at level ⟨ν, ni(ν)γi(ν)⟩, because

ni(ν)⌈⟨ν, γi(ν)⟩⌉ > ⟨ν, ni(ν)γi(ν)⟩ (where ⌈x⌉ denotes the smallest integer bigger or
equal than x).

The special form of the polynomial F
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν as a monomial times a unit,

is proved with the same kind of arguments. Notice that the formula for G
(⟨ν,niγi⟩)
i,ν

still holds for i = i(ν), and it is straightforward to prove that for any term appearing

in G
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν we must have ri(ν) = 0. Suppose now that ν ∈ ρ1 (the case ν ∈ ρ2

is completely analogous), then again with the same kind of arguments as before,
and using the condition

⟨ν, (α1, α2) + r1γ1 + · · ·+ ri(ν)−1γi(ν)−1⟩ = ⟨ν, ni(ν)γi(ν)⟩

we can prove that

α1 > α
(i(ν))
1

rj = r
(i(ν))
j , for 1 ≤ j ≤ i(ν)− 1

and the result follows.
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Finally, we have to prove the claim for F
(⟨ν,ni(ν)+lγi(ν)+l⟩)
i(ν)+l,ν for i(ν) < l < i(ν) +

r(ν) when ν ∈ ρ1 ∪ ρ2 and r(ν) > 0. Notice that the condition de�ning r(ν) is
equivalent to the set of r(ν) + 1 conditions

⟨ν, ni(ν)γi(ν)⟩ = ⟨ν, γi(ν)+1⟩

⟨ν, ni(ν)+1γi(ν)+1⟩ = ⟨ν, γi(ν)+2⟩
...

⟨ν, ni(ν)+r(ν)−1γi(ν)+r(ν)−1⟩ = ⟨ν, γi(ν)+r(ν)⟩

⟨ν, ni(ν)+r(ν)γi(ν)+r(ν)⟩ < ⟨ν, γi(ν)+r(ν)+1⟩

and therefore ⟨ν, γi(ν)+l⟩ ∈ Z>0 for 1 ≤ l ≤ r(ν), even though ν /∈ Ni(ν)+l. And
the proof goes as in the case i < i(ν). �

Corollary 5.11. In the same spirit of Remark 5.3 we have that, for r > 0 and

1 ≤ i ≤ g, F
(⟨ν,niγi⟩+r)
i,ν is linear in

x
(ν1+r)
1 , x

(ν2+r)
2 , z(⟨ν,γ1⟩+r), F

(⟨ν,γ2⟩+r)
1 , . . . , F

(⟨ν,γi⟩+r)
i−1,ν

Proposition 5.12. Given ν ∈ σSing ∩ N0, for 0 ≤ l ≤ ⟨ν, ei(ν)−1γi(ν)⟩, we have
that,

F (l) ≡


F

( l
ej(l,ν)

)

j(l,ν),ν

ej(l,ν)

mod Jν
l−1 if l ≡ 0 mod ej(l,ν)

0 mod Jν
l−1 otherwise

Before proving this result we deduce an interesting consequence, where we give
a smaller set of generators of the ideal Jν

m.

Corollary 5.13. Given m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0 such that m ≤
⟨ν, ei(ν)−1γi(ν)⟩, we have that

Jν
m =

(
Jν
−1, F

(⟨ν,niγi⟩+ri)
i,ν

)
0≤i≤j(m,ν)

,

for 0 ≤ ri < ⟨ν, γi+1 − niγi⟩ if 0 ≤ i < j(m, ν), and for i = j(m, ν) and 0 ≤
rj(m,ν) ≤ [

m−⟨ν,ej(m,ν)−1γj(m,ν)⟩
ej(m,ν)

].

Proof. By Proposition 5.12 we have that F
(⟨ν,niγi⟩+ri)
i,ν ∈ Jν

ei(⟨ν,niγi⟩+ri)
. Since,

by de�nition, Jν
l−1 ⊆ Jν

l , it is enough to notice that for 0 ≤ i < j(m, ν) and 0 ≤
ri < ⟨ν, γi+1 − niγi⟩, and for i = j(m, ν) and 0 ≤ rj(m,ν) ≤ [

m−⟨ν,ej(m,ν)−1γj(m,ν)⟩
ej(m,ν)

]

we have that ei(⟨ν, niγi⟩+ ri) ≤ m. �



JET SCHEMES OF QUASI-ORDINARY SURFACE SINGULARITIES 51

If we consider the analogous de�nition of Jν
m and Dν

m for each of the approx-
imated roots fj (which are q.o. themselves) and the corresponding surfaces X(j)

(see De�nition 3.4), then we can de�ne the sets Dν
j,m, and we have the following

result, which is a consequence of Proposition 5.12 and can be seen as its geometric
counterpart.

Proposition 5.14. For m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0 such that m ≤
⟨ν, ei(ν)−1γi(ν)⟩, we have that

Dν
m =

(
πa
m,[ mej

]

)−1(
Dν

j,[ mej
]

)
where j = j(m, ν), for q > p, πa

q,p : A3
q −→ A3

p is the projection on the jet schemes
of the a�ne ambient space.

Proof. It follows by Proposition 5.12 and the fact that if j(m, ν) = j then
⟨ν, njγj⟩ ≤ m

ej
< ⟨ν, γj+1⟩. �

Hence, for m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0 with m ≤ ⟨ν, ei(ν)−1γi(ν)⟩,
if j(m, ν) = j, the geometry of Cν

m is determined by the geometry of the j-th
semi-root.

Proof of Proposition 5.12. Note that we have j(l, ν) ≤ i(ν), and then
⟨ν, niγi⟩ ∈ Z for 1 ≤ i ≤ j(l, ν).

• We start by dealing with the case ν /∈ ρ1 ∪ ρ2, which is the easiest. In this
case we have for any 0 ≤ i < g

⟨ν, niγi⟩ < ⟨ν, γi+1⟩.
We proceed by induction on l. For l = 0 we have

F (0) = F
(0)
0

n
+

∑
(i,j)+kγ1≥nγ1

dijkx
(0)
1

i
x
(0)
2

j
F

(0)
0

k

since f = zn +
∑

(i,j)+kγ1≥nγ1
dijkx

i
1x

j
2z

k. We have ν1, ν2 > 0, and in the previous

expansion of f we have that (i, j) ̸= (0, 0), since k < n. Therefore we deduce that

F (0) ≡ F
(0)
0,ν

n
mod Jν

−1.

Recall that F
(l)
0,ν = F

(l)
0 and that Jν

−1 =
(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2

)
. As a

consequence F
(0)
0 ∈ Jν

0 ⊆ Jν
i for any i ≥ 0, and therefore for any γ(t) ∈ Dν

i with
i ≥ 0, ordt

(
f0 ◦ γ(t)

)
> 0.

Suppose that the claim is true for F (0), . . . , F (l). Then, by induction hypoth-
esis, for any i ≥ l we have

F
(⟨ν,nsγs⟩)
s,ν , . . . , F

(⟨ν,γs+1⟩−1)
s,ν ∈ Jν

i , for 0 ≤ s < j

F
(⟨ν,njγj⟩)
j,ν , . . . , F

(⟨ν,njγj⟩+r)
j,ν ∈ Jν

i
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with r = [
l−⟨ν,ej−1γj⟩

ej
] and j = j(l, ν). By (14) the same holds for F

(l)
s , and we

deduce that for any γ(t) ∈ Dν
i with i ≥ l,

ordt
(
fs ◦ γ(t)

)
≥ ⟨ν, γs+1⟩, for 0 ≤ s < j,

ordt
(
fj ◦ γ(t)

)
> ⟨ν, njγj⟩+ [

l−⟨ν,ej−1γj⟩
ej

] = [ l
ej
]

where j = j(l, ν). The last equality implies that ordt
(
fj ◦ γ(t)

)
≥ l+1

ej
. There are

two cases:

(i) If j(l + 1, ν) = j(l, ν) = j, i.e. ⟨ν, ej−1γj⟩ ≤ l < l + 1 < ⟨ν, ejγj+1⟩. Then
l + 1 = ⟨ν, ej−1γj⟩+ α with α > 0. We have two possibilities:

(a) If l + 1 ≡ 0 mod ej , then we can write

l + 1 = ⟨ν, ej−1γj⟩+ rej

with r > 0. By Lemma 3.12

f = f
ej
j − djx

β
(j)
1

1 x
β
(j)
2

2 f
s
(j)
1

0 · · · fs
(j)
j

j−1 +
∑

dβ,sx
β1

1 xβ2

2 fs1
0 · · · f

sj+1

j ,

and then, for any γ(t) ∈ Dν
i with i ≥ l + 1 we have

ordt
(
f
ej
j ◦ γ(t)

)
= ejordt

(
fj ◦ γ(t)

)
≥ l + 1

ordt
(
djx

β
(j)
1

1 x
β
(j)
2

2 f
s
(j)
1

0 · · · fs
(j)
j

j−1 ◦ γ(t)
)
≥ ⟨ν, (β(j)

1 , β
(j)
2 ) + s

(j)
1 γ1 + · · ·+ s

(j)
j γj⟩

= ⟨ν, ejγj+1⟩ > l + 1

Suppose that there exists certain coe�cient dβ,s ̸= 0 such that

ordt
(
dβ,sx

β1

1 xβ2

2 fs1
0 · · · f

sj+1

j ◦ γ(t)
)
≤ l + 1.

Then

l + 1 ≥ ⟨ν, (β1, β2)⟩+ s1ordt
(
f0 ◦ γ(t)

)
+ · · ·+ sj+1ordt

(
fj ◦ γ(t)

)
≥ ⟨ν, (β1, β2) + s1γ1 + · · ·+ sjγj⟩+ sj+1ordt

(
fj ◦ γ(t)

)
≥ ⟨ν, ejγj+1⟩ − sj+1⟨ν, γj+1⟩+ sj+1ordt

(
fj ◦ γ(t)

)
≥ ⟨ν, ejγj+1⟩ − sj+1⟨ν, γj+1⟩+ sj+1

l+1
ej

Then ⟨ν, (ej − sj+1)γj+1⟩ ≤ (l+ 1)(1− sj+1

ej
), and, since sj+1 < ej+1 < ej ,

we deduce
⟨ν, ejγj+1⟩ ≤ l + 1

which is a contradiction. Then we have proved that

F (l+1) ≡ F
(⟨ν,njγj⟩+r)
j,ν

ej
mod Jν

l .

(b) If l + 1 ̸≡ 0 mod ej , then we have

ordt
(
f
ej
j ◦ γ(t)

)
> l + 1
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and arguing as before we deduce that

F (l+1) ≡ 0 mod Jν
l

(ii) If j(l + 1, ν) = j(l, ν) + 1 = j + 1, i.e. ⟨ν, ej−1γj⟩ ≤ l < ⟨ν, ejγj+1⟩ ≤
l + 1 < ⟨ν, ej+1γj+2⟩, then l + 1 = ⟨ν, ejγj+1⟩, and j < g. Hence ordt

(
fj ◦

γ(t)
)
≥ ⟨ν, γj+1⟩ and l+1 ≡ 0 mod ej+1. By Lemma 3.11, fj+1 = f

nj+1

j −

cjx
α

(j+1)
1

1 x
α

(j+1)
2

2 f
r
(j+1)
1

0 · · · fr
(j+1)
j

j−1 +
∑

sα,rx
α1
1 xα2

2 fr1
0 · · · f

rj+1

j . By induction
hypothesis

ordt
(
f
nj+1

j ◦ γ(t)
)
≥ nj+1

l+1
ej

= ⟨ν, nj+1γj+1⟩

ordt
(
cjx

α
(j+1)
1

1 x
α

(j+1)
2

2 f
r
(j+1)
1

0 · · · fr
(j+1)
j

j−1 ◦ γ(t)
)
≥ ⟨ν, nj+1γj+1⟩

If there were cα,r ̸= 0 such that ordt
(
xα1
1 xα2

2 fr1
0 · · · f

rj+1

j ◦γ(t)
)
< ⟨ν, nj+1γj+1⟩,

then

⟨ν, nj+1γj+1⟩ > ⟨ν, (α1, α2)⟩+ r1ordt
(
f0 ◦ γ(t)

)
+ · · ·+ rj+1ordt

(
fj ◦ γ(t)

)
≥ ⟨ν, (α1, α2) + r1γ1 + · · ·+ rjγj⟩+ rj+1ordt

(
fj ◦ γ(t)

)
> ⟨ν, nj+1γj+1⟩ − rj+1⟨ν, γj+1⟩+ rj+1ordt

(
fj ◦ γ(t)

)
≥ ⟨ν, nj+1γj+1⟩ − rj+1⟨ν, γj+1⟩+ rj+1⟨ν, γj+1⟩ = ⟨ν, nj+1γj+1⟩

which is a contradiction. Hence ordt
(
fj+1 ◦ γ(t)

)
≥ ⟨ν, nj+1γj+1⟩. Now

consider the expansion

f = f
ej+1

j+1 − dj+1x
β
(j+1)
1

1 x
β
(j+1)
2

2 f
s
(j+1)
1

0 · · · fs
(j+1)
j+1

j +
∑

dβ,sx
β1

1 xβ2

2 fs1
0 · · · f

sj+2

j+1

given in Lemma 3.12. With the same argument as in the previous case we

prove that F (l+1) ≡ F
(⟨ν,nj+1γj+1⟩)
j+1,ν

ej+1

mod Jν
l .

• Now we consider the case ν ∈ ρ1 ∪ ρ2.

(i) If ν = (ν1, 0). Then we have

F (0) ≡ F
(0)
0

n
+

∑
(0,j)+kγ1≥nγ1

d0jkx
(0)
2

j
F

(0)
0

k
mod Jν

−1

but since the condition (0, j) + kγ1 ≥ nγ1 with k < n is impossible, we
deduce

F (0) ≡ F
(0)
0

n
mod Jν

−1

and the proof goes as in the case ν /∈ ρ1∪ρ2, with the di�erence that it might
be that j(l, ν) = i while j(l + 1, ν) > i + 1. This is because even though
γi+1 > niγi, if ν = (ν1, 0), we may have the equality ⟨ν, niγi⟩ = ⟨ν, γi+1⟩.

(ii) If ν = (0, ν2), then by de�nition ⟨ν, eg1−1γg1⟩ = 0 < ⟨ν, eg1γg1+1⟩, and

F (0) ≡ F (0)
g1,ν

eg1 +
∑

dβ,sx
(0)
1

β1

F
(0)
0,ν

s1
· · ·F (0)

g1,ν

sg1+1
mod Jν

−1
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with ⟨ν, eg1γg1+1⟩ ≤ ⟨ν, (β1, 0)+ s1γ1+ · · ·+ sg1+1γg1+1⟩ = sg1+1⟨ν, γg1+1⟩,
and no matter whether sg1+1 is zero or not, since ⟨ν, γg1+1⟩ ≠ 0, we deduce

eg1 ≤ sg1+1, which is impossible, since sg1+1 < eg1+1. Hence F (0) ≡
F

(0)
g1,ν

eg1
mod Jν

−1, and the �rst step of induction is proved. The rest of the
proof goes as the case ν /∈ ρ1∪ρ2 with the di�erences explained in the case
ν ∈ ρ1.

�

By the congruence in (14) we deduce that for m ∈ Z>0, ν ∈ σSing∩[0,m]2∩N0

and 0 ≤ i ≤ j(m, ν),

(15) ordt
(
fi ◦ γ(t)

)
≥ ⟨ν, niγi⟩

for any γ(t) ∈ Dν
m. But we can be more precise, as the following result claims.

Lemma 5.15. Given m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩N0, for any m-jet γ(t) ∈
Dν

m,
ordt

(
fi ◦ γ(t)

)
= ⟨ν, γi+1⟩, for 0 ≤ i < j(m, ν)

ordt
(
fi ◦ γ(t)

)
> m

ei
, for j(m, ν) ≤ i ≤ g

Proof. By (14) and Corollary 5.13 we have that for l ∈ Z>0

F
(l)
i,ν ≡ F

(l)
i mod Jν

m.

Hence we will use the following equivalence, for any jet γ(t) ∈ Dν
m we have ordt

(
fi◦

γ(t)
)
≤ l if and only if F

(l)
i /∈ Jν

m, or equivalently F
(l)
i,ν /∈ Jν

m. Note that,

ordt
(
fi ◦ γ(t)

)
≥ ⟨ν, γi+1⟩, for 0 ≤ i < j(m, ν).

Indeed, it follows by Corollary 5.13 if ⟨ν, γi+1 − niγi⟩ > 0, and by (15) otherwise.

Now we prove by induction on i < j(m, ν) that F
(⟨ν,γi+1⟩)
i,ν /∈ Jν

m and hence the

equality ordt
(
fi ◦ γ(t)

)
= ⟨ν, γi+1⟩ follows. We can divide the part G

(⟨ν,niγi⟩)
i,ν of

F
(⟨ν,niγi⟩)
i,ν as G

(⟨ν,niγi⟩)
i,ν = G

(⟨ν,niγi⟩)
i,ν (1) +G

(⟨ν,niγi⟩)
i,ν (2), where

G
(⟨ν,niγi⟩)
i,ν (1) =

∑
cα,rx

(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi−1⟩)

i−2,ν

ri−1

with ⟨ν, (α1, α2) + r1γ1 + · · ·+ ri−1γi−1⟩ = ⟨ν, niγi⟩, and

G
(⟨ν,niγi⟩)
i,ν (2) =

∑
cα,rx

(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi⟩)

i−1,ν

ri

with ⟨ν, (α1, α2) + r1γ1 + · · ·+ riγi⟩ = ⟨ν, niγi⟩ and ri ̸= 0. Then we can write

F
(⟨ν,niγi⟩)
i,ν =

(
F

(⟨ν,γi⟩)
i−1,ν

ni

+G
(⟨ν,niγi⟩)
i,ν (2)

)
+

+

(
−cix(ν1)

1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

+G
(⟨ν,niγi⟩)
i,ν (1)

)
where in the second part F

(⟨ν,γi⟩)
i−1,ν does not appear.
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First step of induction. We distinguish two cases.

• If min {1 ≤ i ≤ g | ⟨ν, niγi⟩ < ⟨ν, γi+1⟩} = 1, then, by Corollary 5.13,

F
(⟨ν,n1γ1⟩)
1,ν ∈ Jν

m, i.e., the �rst non-monomial equation among the generators of Jν
m

is F
(⟨ν,n1γ1⟩)
1,ν . Suppose that F

(⟨ν,γ1⟩)
0,ν ∈ Jν

m, then

−c1x(ν1)
1

α
(1)
1
x
(ν2)
2

α
(1)
2

+G
(⟨ν,niγ1⟩)
1,ν (1) ∈ Jν

m

If G
(⟨ν,n1γ1⟩)
1,ν (1) = 0 then −c1x(ν1)

1

α
(1)
1
x
(ν2)
2

α
(1)
2 ∈ Jν

m, which is a contradiction, since
it can not be a de�ning equation of Dν

m. Otherwise, ν ∈ ρ1 ∪ ρ2 and we have the
equation

−c1x(ν1)
1

α
(1)
1
x
(ν2)
2

α
(1)
2

+
∑

cα,0x
(ν1)
1

α1

x
(ν2)
2

α2

= 0

where (α1, α2) > n1γ1 and ⟨ν, (α1, α2)⟩ = ⟨ν, n1γ1⟩.
(i) If ν ∈ ρ1, then the condition ⟨ν, (α1, α2)⟩ = ⟨ν, n1γ1⟩ gives α1 = α

(1)
1 , and

hence the equation is

x
(0)
2

α
(1)
2

+
∑

cα,0x
(0)
2

α2

= 0

since x
(ν1)
1 ̸= 0. But this equation is invertible in C{x(0)

2 } and it can not
be zero.

(ii) If ν ∈ ρ2 the same argument holds.

We have proved that−c1x(ν1)
1

α
(1)
1
x
(ν2)
2

α
(1)
2
+G

(⟨ν,n1γ1⟩)
1,ν (1) /∈ Jν

m and hence F
(⟨ν,γ1⟩)
0,ν /∈

Jν
m. Therefore we have that ordt

(
f0 ◦ γ(t)

)
= ⟨ν, γ1⟩.

• If min {1 ≤ i ≤ g | ⟨ν, niγi⟩ < ⟨ν, γi+1⟩} > 1, then we have that ν ∈
ρ1 ∪ ρ2. Denoting m0(ν) = min {1 ≤ i ≤ g | ⟨ν, niγi⟩ < ⟨ν, γi+1⟩} we have that

F
(⟨ν,nm0(ν)γm0(ν)⟩)
m0(ν),ν

is the �rst non-monomial equation among the generators of Jν
m.

Moreover for 1 ≤ l < m0(ν)

F
(⟨ν,γl+1⟩)
l,ν = F

(⟨ν,nlγl⟩)
l,ν

and hence we can write F
(⟨ν,nm0(ν)γm0(ν)⟩)
m0(ν),ν

as a function on x
(ν1)
1 , x

(ν2)
2 and F

(⟨ν,γ1⟩)
0,ν .

Suppose that F
(⟨ν,γ1⟩)
0,ν ∈ Jν

m, then we have an equation

G(x
(ν1)
1 , x

(ν2)
2 ) = 0

where the monomials of G are of the form x
(ν1)
1

α1

x
(ν2)
2

α2

with ⟨ν, (α1, α2)⟩ =
⟨ν, nm0(ν)γn(ν)⟩ = nm0(ν) · · ·nl⟨ν, γl⟩ for 1 ≤ l ≤ m0(ν).

If ν = (ν1, 0) ∈ ρ1, then ν1α1 = ν1nm0(ν) · · ·nlγ
(1)
l and hence α1 is �xed in all

monomials of G. Then, since x
(ν1)
1 ̸= 0, we can write the equation as an equation

in x
(0)
2 , which is invertible in C{x(0)

2 } and hence not zero.
If ν = (0, ν2) ∈ ρ2 the proof is analogous.
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Suppose that ordt
(
fi ◦ γ(t)

)
= ⟨ν, γi+1⟩ for 0 ≤ i < j and we will prove it for

j < j(m, ν). We distinguish two cases.

• If ⟨ν, γj+2⟩ > ⟨ν, nj+1γj+1⟩, then by Corollary 5.13 we have F
(⟨ν,nj+1γj+1⟩)
j+1,ν ∈

Jν
m. Suppose that F

(⟨ν,γj+1⟩)
j,ν ∈ Jν

m, then

−cj+1x
(ν1)
1

α
(j+1)
1

x
(ν2)
2

α
(j+1)
2

F
(⟨ν,γ1⟩)
0,ν

r
(j+1)
1 · · ·F (⟨ν,γj⟩)

j−1,ν

r
(j+1)
j

+G
(⟨ν,nj+1γj+1⟩)
j+1,ν (1) ∈ Jν

m.

This is a contradiction if G
(⟨ν,nj+1γj+1⟩)
j+1,ν (1) = 0. Otherwise we have that ν ∈ ρ1∪ρ2.

If ν = (ν1, 0) ∈ ρ1, then

G
(⟨ν,nj+1γj+1⟩)
j+1,ν (1) =

∑
cα,rx

(ν1)
1

α1

x
(0)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γj⟩)

j−1,ν

rj

with

α1 + r1γ
(1)
1 + · · ·+ rjγ

(1)
j = nj+1γ

(1)
j+1

α2 + r1γ
(2)
1 + · · ·+ rjγ

(2)
j > nj+1γ

(2)
j+1

(16)

Recall that nj+1γj+1 = (α
(j+1)
1 , α

(j+1)
2 )+r

(j+1)
1 γ1+· · ·+r

(j+1)
j γj , where the integers

(α
(j+1)
1 , α

(j+1)
2 ), r

(j+1)
1 , . . . , r

(j+1)
j are unique by Lemma 3.6. Then we deduce from

(16) that

α1 = α
(j+1)
1

rl = r
(j+1)
l for 1 ≤ l ≤ j

α2 > α
(j+1)
2

and we are done, since −cj+1x
(ν1)
1

α
(j+1)
1

x
(0)
2

α
(j+1)
2

F
(⟨ν,γ1⟩)
0,ν

r
(j+1)
1 · · ·F (⟨ν,γj⟩)

j−1,ν

r
(j+1)
j

+

G
(⟨ν,nj+1γj+1⟩)
j+1,ν (1) can be written as

x
(ν1)
1

α
(j+1)
1

x
(0)
2

α
(j+1)
2

F
(⟨ν,γ1⟩)
0,ν

r
(j+1)
1 · · ·F (⟨ν,γj⟩)

j−1,ν

r
(j+1)
j

P (x
(0)
2 )

which is never zero, by induction hypothesis, and by the fact that P (0) = −cj+1

and since we consider germs of quasi-ordinary singularities P (x
(0)
2 ) is invertible in

C{x(0)
2 }.
If ν = (0, ν2) ∈ ρ2 the proof is completely analogous.

• If ⟨ν, γj+2⟩ = ⟨ν, nj+1γj+1⟩, we are in the case ν ∈ ρ1∪ρ2, and analogously as
we did with m0(ν) in the �rst step of induction, we de�ne the integer mj+2(ν) =
min{j + 2 < i ≤ g | ⟨ν, niγi⟩ = ⟨ν, γi+1⟩}. Then, by Corollary 5.13 we have

F
(⟨ν,nmj+2(ν)γmj+2(ν)⟩)
mj+2(ν),ν

∈ Jν
m, and we can write it as a polynomial in x

(ν1)
1 , x

(ν2)
2 ,

F
(⟨ν,γ1⟩)
0,ν , . . . , F

(⟨ν,γj+1⟩)
j,ν . Suppose that F

(⟨ν,γj+1⟩)
j,ν ∈ Jν

m. Then the monomials in
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F
(⟨ν,γj+1⟩)
j,ν are of the form

x
(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γj⟩)

j−1,ν

rj

with the conditions

⟨ν, (α1α2) + r1γ1 + · · ·+ rjγj⟩ = ⟨ν, nmj+2(ν)γmj+2(ν)⟩
= ⟨ν, nmj+2(ν)−1nmj+2(ν)γmj+2(ν)−1⟩
...
= ⟨ν, nj+1 · · ·nmj+2(ν)γj+1⟩.

If ν = (ν1, 0) ∈ ρ1, we deduce that α1, r1, . . . , rj are �xed and α2 varies. Hence we
have that

x
(ν1)
1

α1

x
(0)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γj⟩)

j−1,ν

rj
P (x

(0)
2 ) = 0

is one de�ning equation of Dν
m, and this is a contradiction.

The case ν ∈ ρ2 is analogous.

Now we prove the second part of the statement of the Lemma.
By Corollary 5.13, for any γ(t) ∈ Dν

m, ordt
(
fj(m,ν) ◦ γ(t)

)
> m

ej(m,ν)
. To prove

the claim for j(m, ν) + 1 consider the expansion, denoting j(m, ν) by j to simplify
notation,

fj+1 = f
nj+1

j − cj+1x
α

(j+1)
1

1 x
α

(j+1)
2

2 f
r
(j+1)
1

0 · · · fr
(j+1)
j

j−1 +
∑

cα,rx
α1
1 xα2

2 fr1
0 · · · f

rj+1

j

with nj+1γj+1 = (α
(j+1)
1 , α

(j+1)
2 ) + r

(j+1)
1 γ1 + · · · + r

(j+1)
j γj < (α1, α2) + r1γ1 +

· · ·+ rj+1γj+1. Then,

ordt
(
f
nj+1

j ◦ γ(t)
)

> m
ej+1

ordt
(
x
α

(j+1)
1

1 x
α

(j+1)
2

2 f
r
(j+1)
1

0 · · · fr
(j+1)
j

j−1 ◦ γ(t)
)

= ⟨ν, (α(j+1)
1 , α

(j+1)
2 ) +

∑j
i=1 r

(j+1)
i γi⟩

= ⟨ν, nj+1γj+1⟩
> m

ej+1

Suppose that there exists cα,r ̸= 0 such that ordt
(
cα,rx

α1
1 xα2

2 fr1
0 · · · f

rj+1

j ◦ γ(t)
)
≤

m
ej+1

, then

m
ej+1

≥ ⟨ν, (α1, α2) + r1γ1 + · · ·+ rjγj⟩+ rj+1ordt
(
fj ◦ γ(t)

)
> ⟨ν, (nj+1 − rj+1)γj+1⟩+ rj+1ordt

(
fj ◦ γ(t)

)
> ⟨ν, (nj+1 − rj+1)γj+1⟩+ rj+1

m
ej

Therefore ⟨ν, (nj+1 − rj+1)γj+1⟩ < (1 − rj+1

nj+1
) m
ej+1

, and since rj+1 < nj+1, we

deduce that ⟨ν, γj+1⟩ < m
ej
, which contradicts the de�nition of j(m, ν). Then we

have proved that

ordt
(
fj+1 ◦ γ(t)

)
>

m

ej+1

Recursively we prove the rest of the inequalities for j(m, ν) + 1 < k ≤ g. �
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Corollary 5.16. For m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0, such that m <
⟨ν, ei(ν)−1γi(ν)⟩, we have the following. If 1 ≤ j(m, ν) ≤ g1, then we have

V (F
(⟨ν,niγi⟩)
i,ν )1≤i≤j(m,ν),⟨ν,γi+1−niγi⟩>0 ∩D(x

(ν1)
1 ) ⊂

j(m,ν)−1∩
i=0

D
(
F

(⟨ν,γi+1⟩)
i,ν

)
,

while if g1 < j(m, ν) ≤ g we have

V (F
(⟨ν,niγi⟩)
i,ν )1≤i≤j(m,ν),⟨ν,γi+1−niγi⟩>0∩D(x

(ν1)
1 )∩D(x

(ν2)
2 ) ⊂

j(m,ν)−1∩
i=0

D
(
F

(⟨ν,γi+1⟩)
i,ν

)
.

Example 5.17. Let X be a quasi-ordinary surface de�ned by f = ((z2− x3
1x

2
2)

2−
x6
1x

4
2z)

3 − x23
1 x14

2 z. The generators of the semigroup Γ are γ1 = ( 32 , 1), γ2 =

( 154 , 5
2 ) and γ3 = ( 496 , 5). Notice that ν = (0, 3) /∈ N2, and ⟨ν, e1γ2⟩ = ⟨ν, e2γ3⟩ =

45. At level m = 45 we have the set

D
(0,3)
45 = V (x

(0)
2 , x

(1)
2 , x

(2)
2 , z(0), z(1), z(2), F

(6)
1,ν , F

(7)
1,ν , F

(45)
3,ν ) ∩D(x

(0)
1 ) ∩D(x

(3)
2 ),

where

F
(6)
1,ν = z(3)

2 − x
(0)
1

3
x
(3)
2

2

F
(45)
3,ν = F

(15)
2,ν

3
− x

(0)
1

23
x
(3)
2

14
z(3)

= (x
(0)
1

6
x
(3)
2

4
z(3))3 − x

(0)
1

23
x
(3)
2

14
z(3)

Since D
(0,3)
45 ⊂ D(x

(0)
1 ) ∩D(x

(3)
2 ) ∩D(z(3)), we have that F

(45)
3,ν = 0 if and only if

z(3)
2−x(0)

1

5
x
(3)
2

2
= 0. This equation, together with F

(6)
1,ν = 0, implies x

(0)
1

3
x
(3)
2

2
(x

(0)
1

2
−

1) = 0, and since x
(0)
1

2
− 1 is a unit in C{x(0)

1 }, we deduce D
(0,3)
45 = ∅.

This example illustrates the fact that we are looking at jet schemes of a germ of
quasi-ordinary singularity, instead of jet schemes of the whole a�ne surface. If we
looked at the whole surface there would be other irreducible components that we
do not consider here. This is expectable because the components we consider are
determined by the invariants of the topological type at the origin, so they describe
only what happens in a small neighbourhood of the origin. Actually the other
components that may appear when looking at the whole a�ne surface, will project
on closed points, di�erent from the origin, of the singular locus.

Lemma 5.18. For m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0, we have Dν
m =

∅ if and only if m ≥ ⟨ν, ei(ν)−1γi(ν)⟩ and σReg,j′(m,ν) ̸= ρ1 ∪ ρ2.

Proof. Notice that, by de�nition, Dν
m ̸= ∅ if σReg,j′(m,ν) = ρ1∪ρ2. Moreover, if

m < ⟨ν, ei(ν)−1γi(ν)⟩, then we will prove in Proposition 5.25 that Dν
m is non-empty.
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For the other implication, suppose thatm ≥ ⟨ν, ei(ν)−1γi(ν)⟩ and σReg,j′(m,ν) ̸=
ρ1 ∪ ρ2. We have by Proposition 5.12 that F

(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν ∈ Jν

m, and by Lemma 5.9

that

F
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν = −ci(ν)x

(ν1)
1

α
(i(ν))
1

x
(ν2)
2

α
(i(ν))
2

F
(⟨ν,γ1⟩)
0,ν

r
(i(ν))
1 · · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2

r
(i(ν))

i(ν)−1
+

+G
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν

= x
(ν1)
1

α
(i(ν))
1

x
(ν2)
2

α
(i(ν))
2

F
(⟨ν,γ1⟩)
0,ν

r
(i(ν))
1 · · ·F (⟨ν,γi(ν)−1⟩)

i(ν)−2

r
(i(ν))

i(ν)−1 · U

where U is a unit inRν . Now, applying Corollary 5.16 to ν andm = ⟨ν, ei(ν)−1γi(ν)⟩−
1 we deduce that

Dν
m ⊂ V

(
F

(⟨ν,niγi⟩)
i,ν

)
1≤i≤j(m,ν),⟨ν,γi+1−niγi⟩>0

∩D(M) ⊂
j(m,ν)−1∩

i=0

D
(
F

(⟨ν,γi+1⟩)
i,ν

)
where j(m, ν) = i(ν) − 1 and M = x

(ν1)
1 if j(m, ν) ≤ g1 and M = x

(ν1)
1 x

(ν2)
2

otherwise. Then F
(⟨ν,ni(ν)γi(ν)⟩)
i(ν),ν can not be zero (note that α

(i(ν))
2 = 0 if i(ν) ≤ g1)

and therefore Dν
m = ∅. �

Remark 5.19. For m ∈ Z>0 and ν ∈ σSing ∩ [0,m]2 ∩ N0, if Dν
m ̸= ∅ then

ν ∈ Nj(m,ν).

De�nition 5.20. Given m ∈ Z>0 we de�ne the set:

Lm = {ν ∈ σSing ∩ [0,m]2 ∩N0 | m < ⟨ν, ei(ν)−1γi(ν)⟩}
and for 0 ≤ j ≤ g

L(j)
m = {ν ∈ Lm | j(m, ν) = j}

Remark 5.21. By Corollary 5.16, if ν ∈ L
(0)
m , the ideal Jν

m is monomial, more
precisely

Jν
m =

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν2−1)
2 , z(0), . . . , z([m/n])

)
.

Lemma 5.22. For m ∈ Z>0, we have that Lm ̸= ∅, and

π−1
m (XSing) =

∪
ν∈Lm

Cν
m.

Proof. It follows by Lemma 5.7 and Lemma 5.18, since we have that∪
ν∈σSing∩[0,m]2∩N0

Dν
m =

∪
ν∈Lm

Dν
m
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where the unions are �nite, and therefore it is enough to take the Zariski closure.
�

Notation 5.23. For 0 ≤ i < g, we denote ki(ν) = ⟨ν, γi+1 − niγi⟩, or simply ki if
ν is clear in the context.

Remark 5.24. For m ∈ Z>0 and ν ∈ Lm, we have that kj(m,ν)(ν) > 0 and
kj′(m,ν)(ν) > 0.

Now we can prove the irreducibility of the sets Cν
m.

Proposition 5.25. For any m ∈ Z>0 and ν ∈ Lm, the set Cν
m is irreducible and

Codim(Cν
m) = ν1+ν2+

j(m,ν)−1∑
k=0

⟨ν, γk+1−nkγk⟩+
[

m

ej(m,ν)

]
−⟨ν, nj(m,ν)γj(m,ν)⟩+1

Proof. We will denote along this proof j(m, ν) just by j.

The irreducibility follows by Proposition 2.4 and the de�nition of Cν
m. Let us

prove the formula of the codimension.

• If ν ∈ L
(0)
m it follows from Remark 5.21 that Cν

m = V
(
Jν
−1, z

(0), . . . , z([m/n])
)
.

The claim about the codimension follows trivially.

• If ν ∈ L
(j)
m with j > 0, then

Jν
m =

(
x
(0)
1 , . . . , x

(ν1−1)
1 , x

(0)
2 , . . . , x

(ν−1)
2 , F

(⟨ν,niγi⟩+ri)
i,ν

)
0≤i≤j

for 0 ≤ ri < ki(ν) if i < j and 0 ≤ rj ≤ [m/ej ] − ⟨ν, njγj⟩. It is not a monomial
ideal. We divide the set of non-monomial generators in two sets:

C1 =
{
F

(⟨ν,niγi⟩)
i,ν

}
1≤i≤j, ki>0

C2 =
{
F

(⟨ν,niγi⟩+r)
i,ν

}
(i,r)∈A2

where A2 = {(i, r) | 1 ≤ i < j, 0 < r < ki} ∪ {(j, r) | 0 < r ≤ [mej ]− ⟨ν, njγj⟩}.
We claim that V (⟨C1⟩) ≃ ZΓν

m , the toric variety de�ned by the semigroup Γν
m

generated by

{γi}1≤i≤j(m,ν), ki>0

If ν /∈ ρ1∪ρ2 then any ki > 0 and hence Γν
m = Γj(m,ν). Then V (⟨C1⟩) is isomorphic

to the monomial variety associated to X(j(m,ν)) (see De�nition 3.5).

To deal with C2 we need to study the elements F
(⟨ν,niγi⟩+ri)
i,ν with ri > 0 (note

that we do not describe those in Lemma 5.9). For i such that ki(ν) > 0 we know
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that F
(⟨ν,niγi⟩)
i,ν ∈ Jν

m, and we can write, as we did in the proof of Lemma 5.15,

F
(⟨ν,niγi⟩)
i,ν =

(
F

(⟨ν,γi⟩)
i−1,ν

ni

+G
(⟨ν,niγi⟩)
i,ν (2)

)
+

+

(
−cix(ν1)

1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

+G
(⟨ν,niγi⟩)
i,ν (1)

)
where

G
(⟨ν,niγi⟩)
i,ν (1) =

∑
cα,rx

(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi−1⟩)

i−2,ν

ri−1

with ⟨ν, (α1, α2) + r1γ1 + · · ·+ ri−1γi−1⟩ = ⟨ν, niγi⟩, and

G
(⟨ν,niγi⟩)
i,ν (2) =

∑
cα,rx

(ν1)
1

α1

x
(ν2)
2

α2

F
(⟨ν,γ1⟩)
0,ν

r1
· · ·F (⟨ν,γi⟩)

i−1,ν

ri

with ⟨ν, (α1, α2)+r1γ1+ · · ·+riγi⟩ = ⟨ν, niγi⟩ and ri ̸= 0. Then in the second part

of F
(⟨ν,niγi⟩)
i,ν the F

(⟨ν,γi⟩)
i−1,ν does not appear, and, by the de�nition of the derivation

δ, that we can write

F
(⟨ν,niγi⟩+r)
i,ν = P · F (⟨ν,γi⟩+r)

i−1,ν +Q

where F
(⟨ν,γi⟩+r)
i−1,ν does not appear neither in P nor in Q. Moreover we have that

P ̸= 0, or in other words, P /∈ Jν
m. Indeed, in the proof of Lemma 5.15 we have

showed that

F̃
(⟨ν,niγi⟩)
i,ν = F

(⟨ν,γi⟩)
i−1,ν

ni

+G
(⟨ν,niγi⟩)
i,ν (2) /∈ Jν

m

where f̃i denotes the part of fi depending on fi−1, i.e.,

f̃i = fni
i−1 +

∑
ri ̸=0

cα,rx
α1
1 xα2

2 fr1
0 · · · f

ri
i−1.

Hence F̃
(⟨ν,niγi⟩+r)
i,ν = P · F (⟨ν,γi⟩+r)

i−1,ν /∈ Jν
m. Therefore P /∈ Jν

m and we deduce that

F
(⟨ν,γi⟩+r)
i−1,ν appears for the �rst time in F

(⟨ν,niγi⟩+r)
i,ν .

Now, using that ⟨ν, γi⟩+r = ⟨ν, ni−1γi−1⟩+ki−1(ν)+r, we prove by recurrence
that

(∗) x(ν1+k0+···+ki−1+r)
1 , z(⟨ν,γ1⟩+k0+···+ki−1+r) appear the �rst time in F

(⟨ν,niγi⟩+r)
i,ν

Note that this is true also for x2 whenever g1 = 0.

Then we have proved that any F
(⟨ν,niγi⟩+r)
i,ν ∈ C2 is linear with respect to at

least one of the variables described in (∗), which appears for the �rst time on this

equation, and with non-zero coe�cient over D(x
(ν1)
1 )∩D(x

(ν2)
2 ), by Corollary 5.16.

Since any of these equations in C2 is linear in a di�erent variable, and, by (∗)
we have that it appears for the �rst time in C2, we deduce

V (Jν
−1, F

(0)
0,ν , . . . , F

(⟨ν,γ1⟩−1)
0,ν , C2) ∩D(x

(ν1)
1 ) ∩D(x

(ν2)
2 ) ≃ Aα(m,ν)

where α(m, ν) = 3(m+ 1)− ν1 − ν2 − ⟨ν, γ1⟩ − |A2|, because

V (Jν
−1, F

(0)
0,ν , . . . , F

(⟨ν,γ1⟩−1)
0,ν , C2) ⊆ A3

m ≃ A3(m+1).
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Clearly the cardinal of A2 is |A2| =
∑

m(ν)≤i<j, ki>0(ki−1)+[mej ]−⟨ν, njγj⟩. Hence

Dν
m ≃

(
ZΓν

m ∩D(x
(ν1)
1 ) ∩D(x

(ν2)
2 )

)
× Aα(m,ν)

The toric variety ZΓν
m is complete intersection, hence its codimension equals the

cardinal of C1. Therefore

Codim(Cν
m) = |C1|+ ν1 + ν2 + ⟨ν, γ1⟩+

∑
1≤i<j, ki>0(ki − 1) + [mej ]− ⟨ν, njγj⟩

= ν1 + ν2 +
∑

0≤i<j ki + [mej ]− ⟨ν, njγj⟩+ |C1| − |{1 ≤ i < j | ki > 0}|

since k0 = ⟨ν, γ1⟩. Note that |C1| = |{1 ≤ i ≤ j, ki > 0}| = |{1 ≤ i < j, ki > 0}|+1,
since kj > 0 by de�nition of j(m, ν). Then the formula of the codimension follows.

To �nish we prove the claim. For 1 ≤ i ≤ j(m, ν) with ki > 0 we have by

Proposition 5.12 that F
(⟨ν,niγi⟩)
i,ν ∈ Jν

m. Recall that in the proof of Lemma 5.15 we

proved that whenever ki(ν) > 0, we have

−cix(ν1)
1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

+G
(⟨ν,niγi⟩)
i,ν (1) /∈ Jν

m

Hence we have

F
(⟨ν,γi⟩)
i−1,ν

ni

+G
(⟨ν,niγi⟩)
i,ν (2) /∈ Jν

m

and since F
(⟨ν,γi⟩)
i−1,ν

ni

/∈ Jν
m and cix

(ν1)
1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1

/∈ Jν
m

we can write

F
(⟨ν,niγi⟩)
i,ν = F

(⟨ν,γi⟩)
i−1,ν

ni

· U1 − cix
(ν1)
1

α
(i)
1
x
(ν2)
2

α
(i)
2
F

(⟨ν,γ1⟩)
0,ν

r
(i)
1 · · ·F (⟨ν,γi−1⟩)

i−2,ν

r
(i)
i−1 · U2

with U1, U2 ̸= 0. Then we deduce that

V (⟨C1⟩) ≃ V (hi)1≤i≤j(m,ν), ki>0

where hi = wni
i−1−x

α
(i)
1

1 x
α

(i)
2

2 zr
(i)
1 w

r
(i)
2

1 · · ·wr
(i)
i−1

i−2 , with the relation niγi = (α
(i)
1 , α

(i)
2 )+

r
(i)
1 γ1+ · · ·+ r

(i)
i−1γi−1. And V (hi)1≤i≤j(m,ν), ki>0 is isomorphic to the toric variety

ZΓν
m . �

In particular we have the following variation of the codimension of Cν
m as m

grows.

Corollary 5.26. For ν ∈ Lm such that ν ∈ Lm−1 we have that

Codim(Cν
m) =

 Codim(Cν
m−1) + 1 if m ≡ 0 mod ej(m−1,ν)

Codim(Cν
m−1) otherwise
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5.1. Inclusions among the Cν
m. The collection of irreducible sets {Cν

m | ν ∈ Lm}
covers

(
π−1
m (XSing)

)
red

, but in general it is not its decomposition in irreducible
components. We have to study the inclusions

Cν′

m ⊆ Cν
m for di�erent ν, ν′ ∈ Lm.

We will describe a set Fm ⊂ Lm such that {Cν
m | ν ∈ Fm} is the set of

irreducible components of
(
π−1
m (XSing)

)
red

.

Proposition 5.27. Given m ∈ Z>0 and ν, ν′ ∈ Lm, if ν
′ − ν ∈ σReg,j′(m,ν) then

Cν′

m ⊆ Cν
m.

Proof. The key point is the following observation. By (14) we deduce that for
l ∈ Z>0 and ν, ν′ ∈ Lm with νk ≤ ν′k for k = 1, 2, we have

F
(l)
i,ν = F

(l)
i,ν′ +H

(l)
i,ν′−ν

where H
(l)
i,ν′−ν ∈

(
x
(νk)
k , . . . , x

(ν′
k−1)

k , F
(sj)
j,ν

)
k=1,2,0≤j<i,⟨ν,γj+1⟩≤sj<⟨ν′,γj+1⟩

. Note

that by de�nition, equivalently we have that

H
(l)
i,ν′−ν ∈

(
x
(νk)
k , . . . , x

(ν′
k−1)

k , F
(sj)
j,ν′

)
k=1,2,0≤j<i,⟨ν,γj+1⟩≤sj<⟨ν′,γj+1⟩

.

When ν′ − ν ∈ σReg,j′(m,ν), we have that νk ≤ ν′k for k = 1, 2. Then σReg,j′(m,ν) ⊇
σReg,j′(m,ν′) and then we only have to prove that Jν

m ⊆ Jν′

m . Let then F
(l)
i,ν ∈ Jν

m

and let us prove that it belongs to Jν′

m .

Notice that j(m, ν′) ≤ j(m, ν). We distinguish the following cases:

• If j(m, ν′) = j(m, ν) we have F
(l)
i,ν′ ,H

(l)
i,ν′−ν ∈ Jν′

m .

• If j(m, ν′) = j(m, ν)−1 we have H
(l)
i,ν′−ν ∈ Jν′

m . Moreover F
(l)
i,ν′ ∈ Jν′

m for i <

j(m, ν). Then we have to study F
(l)
j(m,ν),ν′ with ⟨ν, nj(m,ν)γj(m,ν)⟩ ≤ l ≤ [ m

ej(m,ν)
].

Note that (denoting j(m, ν) simply by j) by de�nition we have

⟨ν, ej−1γj⟩ ≤ m < ⟨ν, ejγj+1⟩

⟨ν′, ej−2γj−1⟩ ≤ m < ⟨ν′, ej−1γj⟩

Hence ⟨ν, ej−1γj⟩ ≤ lej ≤ ej [
m
ej
] ≤ m < ⟨ν′, ej−1γj⟩, which implies that l <

⟨ν′, njγj⟩ and therefore F
(l)
j(m,ν),ν′ = 0

• If j(m, ν′) < j(m, ν)−1, we claim that then σReg,j′(m,ν) = {(0, 0)} and there
is nothing to prove. Indeed, if σReg,j′(m,ν) = ρ1∪ρ2 then j′(m, ν) < 1 or j′(m, ν) =
1 = g and γ1 = (1/n, 1/n). While if σReg,j′(m,ν) = ρ2 then 1 ≤ j′(m, ν) ≤ g2 and
ν′ = ν+(0, α). We have j(m, ν) ≤ g2+1 but j(m, ν′) ≥ g1 because ⟨ν, γi⟩ = ⟨ν′, γi⟩
for 1 ≤ i ≤ g1. �
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De�nition 5.28. We consider the order relation in N0, depending on m and de-
noted by ≤m, given by

ν ≤m ν′ if and only if and ν′ − ν ∈ σReg,j′(m,ν).

We de�ne the set Fm = min≤mLm.

Remark 5.29. Notice that if ν ≤m ν′ then in particular νi ≤ ν′i for i = 1, 2.

It is worth pointing out that the inclusions described in Proposition 5.27,
can be explained by the fact that even though a curve may be in the singular
locus of a quasi-ordinary surface, it may not be part of the singular locus of its
�rst approximate quasi-ordinary surfaces. And as Proposition 5.14 explains, the
geometry of Cν

m is only determined by the geometry of one of its semi-roots, for m
small enough. Hence, the jets which project to the singular locus of the surface but
not to the singular locus of the approximate surfaces will not give rise to irreducible
components of the jet schemes for m small enough, and they will be included in
other components.

Now we prove that all possible inclusions among the Cν
m are controlled by the

relation de�ned in De�nition 5.28, that is, in the set Fm.

Proposition 5.30. Given m ∈ Z>0 and ν, ν′ ∈ Fm we have that Cν′

m ̸⊆ Cν
m.

Proof. First notice that the claim is clear if ν � ν′ (coordinate-wise). Indeed,
suppose that ν and ν′ are not comparable. Then we can assume that ν1 < ν′1 and

ν2 > ν′2. Then, since Cν
m ⊆ V (Jν

−1), and Cν′

m ⊆ V (Jν′

−1), it follows that

Cν
m * Cν′

m and Cν′

m * Cν
m.

Let then ν, ν′ be two di�erent elements of Fm such that νi ≤ ν′i for i = 1, 2. We

will prove that Cν′

m ̸⊆ Cν
m by showing that Codim(Cν′

m ) ≤ Codim(Cν
m).

Notice that σReg,j′(m,ν) ̸= ρ1 ∪ ρ2, since otherwise (ν + σ) ∩ Fm = {ν} (recall
that σ = R2

≥0). Then we deduce that j′(m, ν) > 0. It is not easy to study the
inequality directly by using the formula in Proposition 5.25, therefore we will prove
by induction on m the inequality

(17) Codim(Cν′

m ) ≤ Codim(Cν
m) for ⟨ν, e0γ1⟩+ e1 ≤ m < ⟨ν, ei(ν)−1γi(ν)⟩.

First step of induction, m = ⟨ν, e0γ1⟩ + e1 and obviously j′(m, ν) = 1. We have
that γ1 = ( a1

n1
, b1
n1

) with a1 > 1 (because σReg,j′(m,ν) ̸= ρ1 ∪ ρ2). To study the set

(ν + σ) ∩ Fm we distinguish two cases:

• If b1 = 0, 1 then g1 > 0 and σReg,j′(m,ν) = ρ2. Note that ⟨ν + (1, 0), e0γ1⟩ =
⟨ν, e0γ1⟩ + a1e1 > m and then j(m, ν + (1, 0)) = 0. By Proposition 5.27 we have

C
ν+(0,l)
m ⊆ Cν

m and C
ν+(1,0)+(l,r)
m ⊆ C

ν+(1,0)
m and hence

(ν + σ) ∩ Fm = {ν, ν + (1, 0)}
By Proposition 5.25 we have that

Codim(Cν+(1,0)
m ) = ν1 + ν2 + ⟨ν, γ1⟩+ 2 = Codim(Cν

m).
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• If b1 > 1 then σReg,j′(m,ν) = {(0, 0)}, and as before j(m, ν + (1, 0)) = 0.

Then by Proposition 5.27 we have C
ν+(1,0)+(l,r)
m ⊆ C

ν+(1,0)
m for any (l, r) ∈ σ.

Moreover ⟨ν + (0, 1), e0γ1⟩ = ⟨ν, e0γ1⟩ + e1b1 > m, and then j(ν + (0, 1),m) = 0.

By Proposition 5.27 we have C
ν+(0,1)+(l,r)
m ⊆ C

ν+(0,1)
m . Hence

(ν + σ) ∩ Fm = {ν, ν + (1, 0), ν + (0, 1)}

Again by Proposition 5.25 we have

Codim(Cν
m) = Codim(Cν+(1,0)

m ) = Codim(Cν+(0,1)
m )

Suppose that the claim is true for m−1 and we prove it for m. We distinguish
two cases:

(i) If ν′ ∈ (ν+σ)∩Fm−1, by induction hypothesis, we have that Codim(Cν′

m−1) ≤
Codim(Cν

m−1). By Corollary 5.26 we know that, passing from m−1 to m, the codi-
mension of Cν

m grows if and only if m is divisible by ej(m−1,ν), and it grows by one.
But since ν ≤ ν′ we have that j(m−1, ν′) ≤ j(m−1, ν) and therefore, if ej(m−1,ν′)

dividesm, then ej(m−1,ν) dividesm, and it follows that Codim(Cν′

m ) ≤ Codim(Cν
m).

(ii) If ν′ /∈ (ν + σ) ∩ Fm−1, there must exists ν̃ ∈ (ν + σ) ∩ Fm−1 such that
ν̃ ≤m−1 ν′ and ν̃ ̸≤m ν′. By induction hypothesis we have that Codim(C ν̃

m−1) ≤
Codim(Cν

m−1), and again as in (i), since ν � ν̃ then j(m, ν) ≥ j(m, ν̃) and there-

fore Codim(C ν̃
m) ≤ Codim(Cν

m). Now we are going to prove that Codim(Cν′

m ) ≤
Codim(C ν̃

m). We have two possibilities, either ν̃ ∈ Lm or ν̃ /∈ Lm.

• If ν̃ ∈ Lm, then j′(m−1, ν̃) < g2+1 (because Cν′

m−1 ⊆ C ν̃
m−1) and j′(m, ν̃) ≥

g2 + 1 (because Cν′

m * C ν̃
m). Hence m = ⟨ν̃, eg2γg2+1⟩+ eg2+1 and

π−1
m,m−1(D

ν̃
m−1) = V

(
x
(0)
1 , . . . , x

(ν̃1−1)
1 , x

(0)
2 , . . . , x

(ν̃2−1)
2 , z(0), . . . , z(⟨ν̃,γ1⟩−1),

, F
(⟨ν̃,n1γ1⟩)
1,ν̃ , . . . , F

(⟨ν̃,ng2+1γg2+1⟩)
g2+1,ν̃ , F

(⟨ν̃,ng2+1γg2+1⟩+1)

g2+1,ν̃

)
∩D

(
x
(ν̃1)
1

)
,

where

F
(⟨ν̃,ng2+1γg2+1)

g2+1,ν̃ = F
(⟨ν̃,γg2+1)

g2,ν̃

ng2+1

−x(ν̃1)
1

α
(g2+1)
1

x
(ν̃2)
2

α
(g2+1)
2 · · ·F (⟨ν̃,ng2−1γg2−1⟩)

g2−1,ν̃ +Gg2+1,ν̃ ,

with α
(g2+1)
2 > 1, and

F
(⟨ν̃,ng2+1γg2+1⟩+1)

g2+1,ν̃ = ng2+1F
(⟨ν̃,γg2+1⟩)
g2,ν̃

ng2+1−1
F

(⟨ν̃,γg2+1⟩+1)

g2,ν̃
− x

(ν̃2)
2 H,

where H is a polynomial in the variables

H(x
(ν̃1)
1 , x

(ν̃1+1)
1 , x

(ν̃2)
2 , x

(ν̃2+1)
2 , . . . , F

(⟨ν̃,ng2−1γg2−1⟩)
g2−1,ν̃ , F

(⟨ν̃,ng2−1γg2−1⟩+1)

g2−1,ν̃ ).

Then

(π−1
m,m−1(C

ν̃
m−1))red = V (J ν̃

m) ∩D(x
(ν̃1)
1 ) ∩ V (x

(ν̃2)
2 )∪V (J ν̃

m) ∩D(x
(ν̃1)
1 ) ∩D(x

(ν̃2)
2 ),
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and it is not di�cult to see that (π−1
m,m−1(C

ν̃
m−1))red = Cν′

m ∪ C ν̃
m, where ν′ =

ν̃ + (0, α), with

α =

{
1 if g2 = g1

min{ng1+1, kg1+1(ν̃)} otherwise

In both cases we have, by Proposition 5.25, that Codim(Cν′

m ) = Codim(C ν̃
m−1)+1 =

Codim(C ν̃
m).

• If ν̃ /∈ Lm, the reason is that m = ⟨ν̃, ei(ν̃)−1γi(ν̃)⟩ with i(ν̃) ≤ g2 + 1, since

j′(m − 1, ν̃) ≤ g2. We have that (π−1
m,m−1(D

ν̃
m−1))red = V (J ν̃

m−1, F
(⟨ν̃,nν̃γi(ν̃)⟩)
i(ν̃),ν̃ ) ∩

D(x
(ν̃1)
1 ), where

F
(⟨ν̃,ni(ν̃)γi(ν̃)⟩)
i(ν̃),ν̃ = x

(ν̃1)
1

α
(i(ν̃))
1

x
(ν̃2)
2

α
(i(ν̃))
2

z(⟨ν̃,γ1⟩)r
(i(ν̃))
1 · · ·F (⟨ν̃,ni(ν̃)−2γi(ν̃)−2⟩)

i(ν̃)−2,ν̃

r
(i(ν̃))

i(ν̃)−1
+Gi(ν̃),ν̃ .

Therefore, by Corollary 5.16, F
(⟨ν̃,ni(ν̃)γi(ν̃))

i(ν̃),ν̃ = 0 implies that x
(ν̃2)
2 = 0 because

i(ν̃) − 2 < g2. And, as before, if g2 = g1 + 1 and i(ν̃) = g2 + 1 then we have
that ν′ = ν̃ + (0, α) with α = min{ng1+1, ⟨ν̃, γg1+2 − ng1+1γg1+1⟩}. Otherwise
ν′ = ν̃ + (0, 1), and in both cases we have

(π−1
m,m−1(C

ν̃
m−1))red = Cν′

m

with Codim(Cν′

m ) = Codim(C ν̃
m−1) + 1. Since ν̃ ∈ (ν + σ) ∩ Fm−1, it follows

that j(m − 1, ν) > j(m − 1, ν̃) = i(ν̃) − 1 and by Corollary 5.26 we have that
Codim(Cν

m) = Codim(Cν
m−1) + 1, which �nishes the proof. �

5.2. Description of the m-jets through the singular locus. Now we can prove
the main theorem of this section.

Theorem 5.31. For m ∈ Z>0 the decomposition of π−1
m (XSing) in irreducible

components is given by

(π−1
m (XSing))red =

∪
ν∈Fm

Cν
m.

Proof. The irreducibility of the sets Cν
m was proven in Proposition 5.25. And

by Proposition 5.27 and Proposition 5.30 we have that∪
ν∈Lm

Cν
m =

∪
ν∈Fm

Cν
m.

Hence the result follows by Lemma 5.22. �

Remark 5.32. When the equisingular dimension is c = 1 (see De�nition 3.13),
then g1 = g2 = g. Moreover we have the following properties for 1 ≤ i ≤ g

⟨ν, ei−1γi⟩ = ⟨ν + (0, r), ei−1γi⟩, for all r ∈ Z

if ν ∈ Ni then ν + (0, r) ∈ Ni, for all r ∈ Z
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Hence we deduce that for any m ∈ Z>0 and ν ∈ Lm we have σReg,j′(m,ν) = ρ2, and
therefore Fm = Lm ∩ ρ1.

The behaviour of the jet schemes is exactly as the plane curve de�ned by the

Puiseux pairs λ
(1)
1 , . . . , λ

(1)
g . In [24] the second author describes the irreducible

components of jets through the origin for plane curves.

The previous remark is the simplest evidence of the fact that the irreducible
components are only a�ected by the topological type. This is proved in Theorem
5.35.

An alternative way to describe the irreducible components of the jet schemes
through the singular locus is by representing the crucial information in a graph.
To any quasi-ordinary surface singularity we can associate a weighted graph, con-
taining information about the irreducible components of jet schemes and how they
behave under truncation maps.

De�nition 5.33. The weighted graph of the jet schemes of X is the leveled weighted
graph Γ de�ned as follows:

• for m ≥ 1 we represent every irreducible component of π−1
m (XSing) by a

vertex Vm, the sub-index m being the level of the vertex;
• we join the vertices Vm+1 and Vm if the canonical morphism πm+1,m in-
duces a morphism between the corresponding irreducible components;
• we weight each vertex by the codimension of the corresponding irreducible
component.

We de�ne EΓ to be the weighted graph that we obtain from Γ by adding to
any vertex of Γ the weight given by the embedding dimensions of the corresponding
irreducible component.

Recall that if ν ∈ L
(0)
m the ideal Jν

m is monomial, and moreover generated by
hyperplane coordinates (see Remark 5.21), then we will say that Cν

m is hyperplane

component. Otherwise ν ∈ L
(j)
m for j > 0, and we will say that Cν

m is a lattice
component (because ν ∈ Nj). Notice that the data of the codimension together
with the embedding dimension permits to distinguish when the vertex corresponds
to a hyperplane or a lattice component. Indeed, given a vertex of the graph, let e
be the embedding dimension and c the codimension, then the vertex corresponds to
a hyperplane component if and only if e+ c = 3(m+ 1). Therefore we can extract
from EΓ a subgraph Γ′ as follows.

De�nition 5.34. We de�ne a weighted subgraph Γ′ of EΓ by adding the condition

that we join the vertices Vm (corresponding to a certain component, say Cν′

m ) and
Vm−1 (corresponding to Cν

m−1) only if

• if ν ∈ Lm−1 with 0 < j(m− 1, ν) ≤ g2 then ν′ = ν + (0, α) with α minimal
among the elements in Fm.
• if ν ∈ Lm−1 with j(m− 1, ν) > g2 then ν′ = ν.
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The important thing about this new graph Γ′ is that, with the weights, we are
able to detect when we pass from a hyperplane component at level m to a lattice
component at level m + 1, as we also do in the graph EΓ, but now we can follow
this component in a unique path in the graph as m grows. This will be useful to
prove the following result.

Theorem 5.35. The graph Γ′ determines and it is determined by the topological
type of the singularity.

Proof. The graph is determined by the semigroup, and therefore, by [15], by
the topological type. Now we prove the converse.

We prove �rst that we can read the number of characteristic exponents in
the graph, in the following way. Any vertex Vm on the graph comes with the
codimension c(Vm) and the embedding dimension e(Vm). Take an in�nite branch
(which we know that must correspond to ν ∈ Ng), and consider the �nite part that
starts at

m0 = max {m | Vm−1 is a hyperplane component and Vm is a lattice component},
and ends at

m1 = min {r | c(Vm) = c(Vm−1) + 1 for all m > r}.
In the case XSing = Z1 ∪ Z2 (which is the case with two components at level

m = 1) we have to make sure that moreover the component corresponds to ν ∈◦
σ,

and this can be done by choosing a component which projects to both Z1 and Z2

(it always exists for m big enough). Note that then we deduce m0 = ⟨ν, e0γ1⟩ and
m1 = ⟨ν, eg−1γg⟩, and we can read e0, . . . , eg−1 by using Corollary 5.26. Indeed,
going backwards we look for the biggest m′ such that c(Vm′) = c(Vm0) − 1. Then
n = m0−m′. Now, going from levelm0 tom1, we know that the codimension grows
by one exactly every e1 steps at �rst, after every e2 steps, and so on. Since e1 > e2 >
· · · > eg = 1 we can read these numbers on the graph. Notice that equivalently we
get n1, . . . , ng, and in particular we have g, the number of characteristic exponents.

Suppose now that the number of generators of the semigroups is the same, say
g. We will prove by induction on g that the graphs corresponding to di�erent sets
of generators, are di�erent. We denote the vertices at levelm by Vm(c(Vm), e(Vm)).
The case g = 1 was treated in Theorem 4.21.

Now, suppose it is true for g− 1 characteristic exponents, and we will prove it
for g. From Proposition 5.14 we deduce that is su�cient to prove that the graphs
associated to the sets {γ1, . . . , γg−1, γg} and {γ1, . . . , γg−1, γ

′
g} are di�erent, since

otherwise it holds by induction hypothesis. Moreover, since we read the integers
n1, . . . , ng in the graph, we assume that n′

g = ng. As in the case g = 1, by looking
at the singular locus (which is seen at m = 1) we just have to consider the case

γ
(2)
g = γ

′(2)
g = 1

ng
and the case γ

(2)
g , γ

′(2)
g > 1

ng
. In the �rst case γ

(1)
g ̸= γ

′(1)
g and

γ
(2)
i = γ

′(2)
i = 0 for 1 ≤ i ≤ g − 1. Therefore the graphs are the same till we

get to level m = min {ng⟨ν, γg⟩, ng⟨ν, γ′
g⟩}, where ν = (ν1, 0) ∈ σSing ∩Ng−1 with

ν1 smallest with this property. Since ⟨ν, γg⟩ ̸= ⟨ν, γ′
g⟩ the graphs must di�er at
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some moment. Finally, when γ ̸= γ′ with γ
(2)
g , γ

′(2)
g > 1

ng
, again by Proposition

5.14, the graphs must be the same for {γ1, . . . , γg} and {γ1, . . . , γg−1, γ
′
g}, till the

last semi-root, that is, f , starts playing a role in the de�nition of a component,
say Cν . Since ⟨ν, γg⟩ ̸= ⟨ν, γ′

g⟩ we will see the di�erence on the graphs at level
m = min {ng⟨ν, γg⟩, ng⟨ν, γ′

g⟩}. �

5.3. Log-canonical threshold. In [29], Mustaµa gave a formula of the log-canonical
threshold in terms of the codimension of jet schemes, which in our setting can be
stated as

lct(f) = minm≥0
Codim(Xm)

m+ 1
.(18)

Then, as an application to Theorem 5.31, we can recover, for the case of
surfaces, the result in [8].

Corollary 5.36. The log-canonical threshold of a quasi-ordinary surface singular-
ity is given by:

lct0(X,A3) =



1+λ
(1)
1

e0λ
(1)
1

if λ1 ̸=
(

1
n1

, 1
n1

)
1 if λ1 =

(
1
n1

, 1
n1

)
and g = 1

n1(1+λ
(1)
2 )

e1(n1(1+λ
(1)
2 )−1)

if λ1 =
(

1
n1

, 1
n1

)
and g > 1

Moreover, the components that contribute to the log canonical threshold are

Cν
⟨ν,e0γ1⟩−1 if γ1 ̸= ( 1

n1
, 1
n1

) or g = 1

Cν
⟨ν,e1γ2⟩−1 otherwise

where ν = (l, 0) ∈ N1 if γ1 ̸= ( 1
n1

, 1
n1

) and ν = (l, 0) ∈ N2 otherwise.

Proof. The case λ1 = ( 1
n1

, 1
n1

) and g = 1 behaves as an An-singularity, and

then lct(f) = 1. For the rest of the cases, by Corollary 5.26, the codimension of
a component grows faster as m grows, for bigger j(m, ν). Therefore, the smaller
codimension will be attached for ν ∈ Fm∩min≤m{ν ∈ Lm | σReg,j′(m,ν) = ρ1∪ρ2},
and more concretely for ν ∈ L

(0)
m ∩ Fm whenever L

(0)
m ∩ Fm ̸= ∅. If g1 = 0,

since a1 ≥ b1, we deduce that the minimal codimension among the elements in
Fm∩min≤m{ν ∈ Lm | σReg,j′(m,ν) = ρ1∪ρ2} is attached for ν of the form ν = (l, 0),
while if g1 > 0 then Fm ∩min≤m{ν ∈ Lm | σReg,j′(m,ν) = ρ1 ∪ ρ2} consists of just
a point of the form ν = (l, 0).

We want to minimize not just the codimension, but the quotient Codim(Xm)
m+1 .

That is, to �nd the biggest m such that ν still belongs to Fm ∩ min≤m{ν ∈
Lm | σReg,j′(m,ν) = ρ1 ∪ ρ2}. Then, when λ1 ̸= ( 1

n1
, 1
n1

), this is attached for

m = ⟨ν, e0γ1⟩ − 1 such that ν ∈ Lm+1 with j′(m, ν) = 0 and j(m, ν) > 0. Then
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m = ⟨(l, 0), e0γ1⟩−1 and Codim(Cν
m) = l+[mn ]+1, and since j(m, ν) > 0, (l, 0) ∈ N1

and therefore Codim(Cν
m) = l + l a1

n1
, which implies that

Codim(Cν
m)

m+1 = a1+n1

na1
.

If γ1 = ( 1
n1

, 1
n1

) and g > 1, what happens is that when m = ⟨ν, e0γ1⟩ there
is no subdivision of the component and σReg,1 = ρ1 ∪ ρ2. If we denote the second

exponent by γ2 = ( α2

n1n2
, β2

n1n2
), we look for ν of the form (l, 0) such that m+ 1 =

⟨ν, e1γ2⟩ with ν ∈ N2. Then Codim(Cν
m) = l + ⟨ν, γ1⟩ + [me1 ] − ⟨ν, n1γ1⟩ + 1 =

l + ⟨ν, γ1⟩ + ⟨ν, γ2 − n1γ1⟩, and therefore
Codim(Cν

m)
m+1 =

l+ l
n1

+ 1
e1

(e1l
α2

n1n2
−e0

l
n1

)

e1l
α2

n1n2

=

1+ 1
n1

+
α2

n1n2
−1

e2
α2
n1

=
1+

α2
n2

e1
α2
n2

. This coincides with the statement since λ2 = ( α2

n1n2
−

n1−1
n1

, β2

n1n2
− n1−1

n1
). �

We now deduce a family of examples whose log canonical threshold can not
be computed by a monomial valuation.

Corollary 5.37. Let X be a quasi-ordinary surface singularity with g > 1 char-
acteristic exponents, and such that λ1 = ( 1

n1
, 1
n1

). Then lct(X,A3) can not be
contributed by monomial valuations in any variables.

Proof. It follows from Corollary 5.36 that lct(X,A3) is contributed by Cν
⟨ν,e0γ1⟩,

for ν as is made precise in the above statement. This is equivalent to say that the
valuation

VCν
⟨ν,e1γ2⟩−1

: C[[x1, x2, z]] −→ N

h 7−→ ordt(h ◦ η)

where η is the generic point of (ΨA3

⟨ν,e1γ2⟩−1)
−1(Cν

⟨ν,e1γ2⟩−1) and

ΨA3

m : A3
∞ −→ A3

m

is the map induced by truncation. Note that ν can take all the values described in

Corollary 5.36 but since z(⟨ν,γ1⟩)n1−x(ν1)
1 x

(ν2)
2 = 0 is one of the de�ning equations of

Cν
⟨ν,e1γ2⟩−1, then VCν

⟨ν,e1γ2⟩−1
(zn1−x1x2) > n1VCν

⟨ν,e1γ2⟩−1
(z) and VCν

⟨ν,e1γ2⟩−1
(zn1−

x1x2) > VCν
⟨ν,e1γ2⟩−1

(x1)+VCν
⟨ν,e1γ2⟩−1

(x2). Therefore VCν
⟨ν,e1γ2⟩−1

is not a monomial

valuation. �

5.4. Examples. We �nish by looking at some examples, to illustrate once more
the arguments we use in proving the description of

(
π−1
m (XSing)

)
red

in irreducible
components.

Example 5.38. Let X be the q.o. surface de�ned by f = (z2 − x3
1x2)

3 − x10
1 x4

2,
whose generators of the semigroup are γ1 = ( 32 ,

1
2 ) and γ2 = ( 103 , 4

3 ). We have that
g1 = 0 and g2 = 1. The singular locus is

XSing = {z = x1 = 0} ∪ {z = x2 = 0}
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and then σSing = σ \ {(0, 0)}. Then(
π−1
1 (XSing)

)
red

= V
(
x
(0)
1 , z(0)

)
∪ V

(
x
(0)
2 , z(0)

)
or, described with our notation, F1 = {(1, 0), (0, 1)}. Note that σSing∩[0, 1]2∩N0 =
{(1, 0), (0, 1), (1, 1)}, and since

C
(1,1)
1 = V

(
x
(0)
1 , x

(0)
2 , z(0)

)
,

it is not an irreducible component, because it is contained in both V
(
x
(0)
1 , z(0)

)
and

V
(
x
(0)
2 , z(0)

)
.

Let us lift the component C
(0,1)
1 to higher levels. If ν = (0, 1),(

π−1
6,1(C

ν
1 )
)
red

= V
(
x
(0)
2 , x

(1)
2 , z(0), F

(2)
1,ν

)
where F

(2)
1,ν = z(1)

2 − x
(0)
1

3
x
(2)
2 . We can check that (0, 1) ∈ F6 and that it is indeed

an irreducible component of
(
π−1
6 (XSing)

)
red

.
To illustrate typical behavior of this case we have to lift the components much

higher.
Straightforwardly it can be checked that(

π−1
20 (XSing)

)
red

= C
(3,0)
20 ∪ C

(2,1)
20 ∪ C

(1,3)
20 ∪ C

(0,6)
20

as Theorem 5.31 claims. Let us lift the component

C
(0,6)
20 = V

(
x
(0)
2 , . . . , x

(5)
2 , z(0), z(1), z(2), F

(6)
1,ν

)
We have that, if ν = (0, 6),

π−1
21,20(C

ν
20) = V

(
x
(0)
2 , . . . , x

(5)
2 , z(0), z(1), z(2), F

(6)
1,ν , F

(7)
1,ν

)
where

F
(6)
1,ν = z(3)

2 − x
(1)
1

3
x
(3)
2

F
(7)
1,ν = 2z(3)z(4) − 3x

(1)
1

2
x
(2)
1 x

(3)
2 − x

(1)
1

3
x
(4)
2

This is not irreducible, since it decomposes as

V
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x

(2)
2 , z(0), z(1), z(2), z(3)

)
∪

∪V
(
x
(0)
1 , x

(0)
2 , x

(1)
2 , x

(2)
2 , z(0), z(1), z(2), F

(6)
1,ν , F

(7)
1,ν

)
∩ {x(1)

1 ̸= 0}

We can check that V
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2 , x

(2)
2 , z(0), z(1), z(2), z(3)

)
does not give rise

to an irreducible component, since it is contained in C
(2,2)
21 and (2, 2) ∈ F21.

Example 5.39. Consider the quasi-ordinary surface f =
(
(z2 − x3

1)
2 − x7

1x
3
2

)2 −
x11
1 x5

2(z
2−x3

1). We draw the graph in Figure 4. The semigroup is generated by the
vectors γ1 = ( 32 , 0), γ2 = ( 72 ,

3
2 ) and γ3 = ( 294 , 13

4 ). We have that g1 = g2 = 1. The
singular locus is reducible, of the form

XSing = {z = x1 = 0} ∪ {x2 = z2 − x3
1 = 0} = Z1 ∪ Z2.
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Then σSing = R2
≥0 \ {0} and σReg,1 = ρ2, σReg,2 = σReg,3 = {(0, 0)}.

The set Fm describing the irreducible components is the following, for some
m:

Fm = {(1, 0), (0, 1)}, for 1 ≤ m < 6

Fm = {(1, 0), (0, 2)}, for 6 ≤ m < 12

F12 = {(2, 0), (0, 2)}

F13 = {(2, 0), (0, 3)}

F18 = {(2, 0), (0, 4)}

F26 = {(2, 0), (0, 4), (0, 5)}

F28 = {(3, 0), (2, 0), (0, 4), (0, 5)}
and the result can be checked by lifting the components Z1 and Z2 of the singular
locus to level m as the following graph shows (we did not draw the weights of the
vertices for clearness).

Now we give some explanations to illustrate how Proposition 5.27 works.

For m = 1, we have L
(0)
1 = {(1, 0), (1, 1)}, L(1)

1 = {(0, 1)} and L
(2)
1 = L

(3)
1 = ∅.

By Proposition 5.27 C
(1,1)
1 ⊆ C

(1,0)
1 , since j′(1, (1, 0)) = 0 and σReg,0 = ρ1 ∪ ρ2.

At level m = 6 we have L
(0)
6 = {ν ∈ [0, 6]2 ∩ N0 | ν1 ̸= 0}, L

(1)
6 = ∅ and

L<
6 = {(0, ν2) | 2 ≤ ν2 ≤ 6} and L

(2)
6 = L

(3)
6 = ∅. Note that j′(6, (1, 0)) = 0, hence

σReg,j′(6,(1,0)) = ρ1 ∪ ρ2 and by Proposition 5.27 Cν
6 ⊆ C

(1,0)
6 for any ν ∈ L

(0)
6 .

Moreover j′(6, (0, 2)) = 1, hence σReg,j′(6,(0,2)) = ρ2 and by Proposition 5.27 Cν
6 ⊆

C
(0,2)
6 for any ν ∈ L

(1)
6 .

Note how at this level ν = (0, 1) does no longer give rise to an irreducible
component, since ⟨(0, 1), e1γ2⟩ = 6 and (0, 1) /∈ N2. Then we have that (0, 2) ∈ F6

and the vertex associated with C
(0,1)
5 and the one associated with C

(0,2)
6 are joined

in the graph Γ′.
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