JET SCHEMES OF QUASI-ORDINARY SURFACE
SINGULARITIES

HELENA COBO AND HUSSEIN MOURTADA

ABsTrACT. We describe the irreducible components of the jet schemes with
origin in the singular locus of a two-dimensional quasi-ordinary hypersurface
singularity. A weighted graph is associated with these components and with
their embedding dimensions and their codimensions in the jet schemes of the
ambient space. We prove that the data of this weighted graph is equivalent
to the data of the topological type of the singularity. We also determine a
component of the jet schemes (equivalent to a divisorial valuation on A3),
that computes the log canonical threshold of the singularity embedded in A3.
This provides us with pairs X C A3 whose log canonical thresholds are not
computed by monomial divisorial valuations. Note that for a pair C C A2,
where C' is a plane curve, the log canonical threshold is always computed by
a monomial divisorial valuation (in suitable coordinates of A?).

1. INTRODUCTION

By definition, a complex analytic quasi-ordinary singularity (X,0) of dimen-
sion d comes with a finite projection p : X — A?, whose discriminant is a normal
crossing divisor. These singularities appear in the Jungian approach to resolution
of singularities (see [31]). We are interested in irreducible quasi-ordinary surfaces
X, defined by f € C{x1,22}[2]. Thanks to the Abhyankar-Jung theorem, we know
that a hypersurface of this type is parametrized in the form z; = x; for i = 1,2
and z = ((z1, z2), where ( is an element in C{x}/n,x;/n},n being the degree of f
as a polynomial in z. Moreover, some special exponents (called the characteristic
exponents) which belong to the support of the series ¢, are complete invariants
of the topological type of the singularity (see [15]). In particular, they determine
invariants which come from resolution of singularities, like the log canonical thresh-
old or the Motivic zeta functions ([3], [9], [8], [18]). They also give insights about
the construction of a resolution of singularities ([6], [7], [34], [17])-

Our aim is to construct some comparable complete invariants for all types of
singularities. Since in general, we cannot have a parametrization, we search for
such invariants in the jet schemes. For m € N, the m-th jet scheme, denoted by
X, is a scheme that parametrizes morphisms Spec C[t]/(t™ 1) — X. Intuitively

2010 Mathematics Subject Classification. 14E18,14J17.
Key words and phrases. Singularities, Jet schemes, Quasi-ordinary singularities, log canonical
threshold.



2 H. COBO AND H. MOURTADA

we can think of it as a scheme parametrizing arcs in an ambient space, which have
contact at least m + 1 with X. We know already that some invariants which come
from resolution of singularities are encoded in the jet schemes ([29], [13]).

We want to extract from the jet schemes information about the singularity,
which can be expressed in terms of invariants of resolutions of singularities. For
specific types of singularities, the knowledge of the irreducible components of the
jet schemes X, of a singular variety X, together with some of their invariants,
such as dimension or embedding dimension, allows us to determine deep invariants
of the singularity of X: the topological type in the case of curves (see [24]), and
the analytical type in the case of normal toric surfaces (see [25]). Moreover, in
the case of irreducible plane curves, the minimal embedded resolution can be con-
structed from the jet schemes ([21]), and the same holds for rational double point
singularities ([28]).

Understanding the structure of jet schemes for particular singularities is an
interesting problem. It has been studied in [35] and [12] for determinantal varieties,
in [24] for plane curve singularities, in [25] for normal toric surfaces, in [26] for
rational double point surface singularities, and in [33] for commuting matrix pairs
schemes.

In this paper, we study jet schemes of a two-dimensional, irreducible quasi-
ordinary hypersurface singularity X = {f = 0}, with f € C{z1,x2}[z]. We give a
combinatorial description of the irreducible components of the set of m-jets with
center in the singular locus of X, in terms of invariants of the singularity extracted
from the characteristic exponents of X. We define the candidates to be the irre-
ducible components C},, but there are many inclusions among these candidates.
We study these inclusions by defining on ZZ%, a subtle relation depending on m
and expressed in terms of the invariants cited above. It reflects the evolution of
the singular loci of quasi-ordinary surfaces approximating our surface X.

Then, with the minimal elements with respect to this relation we define a set
F,, C Z?, and for any v € F,,, we have a component C*, C X,,,. We prove that

m
these are the irreducible components of m-jets through the singular locus.

Theorem 1.1. Let X be a quasi-ordinary hypersurface of dimension two. For any
m € Zsg, the scheme of m—th jet of X with center in its singular locus has the
following decomposition into trreducible components

(W;I(XSing))red = U Cins
vEFm,
where my, * X —> X is induced by projection.

Note that if we choose an affine variety Y C C? which has a quasi-ordinary
singularity at a point z, then after shrinking Y into a small enough neighbourhood
of x, this gives us the decomposition of Y, into irreducible components, modulo
adding the component obtained as the Zariski closure of the set of jets whose center
is in the regular locus of Y.
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In general, for any algebraic variety V, the irreducible components of the jet
schemes V,,, fit in natural projective systems, to which we associate a weighted
graph. Graphs are a powerful tool for studying surface singularities (see [32] for
a nice and historical introduction on this topic). The vertices of our graph corre-
spond to irreducible components, and to every vertex we attach the corresponding
embedding dimension and codimension in the jet scheme of the ambient space. We
will prove the following result.

Theorem 1.2. Let X be a quasi-ordinary hypersurface of dimension two. The
weighted graph associated with the irreducible components of jets through the singu-
lar locus determines and it is determined by the topological type of the singularity.

This theorem achieves one of our goals for this type of singularities: con-
structing a complete invariant of the topological type of the singularity from its jet
schemes; while the graph of the jet schemes is defined in general, the characteristic
exponents, which are also a complete invariant of quasi-ordinary singularities, does
not have a meaning for more general singularities for two reasons: 1) for a gen-
eral singularity we only have parametrizations of parts of the singularity (wedges),
2) the shape of these parametrizations is more complicated than the shape of
parametrizations of quasi-ordinary singularities.

It is also important to stress that other invariants involving arcs and jets, like
motivic zeta functions, do not determine the topological type in the case of quasi
ordinary singularities, see [9] and [18].

We devote Section 4 to study in detail the case of quasi-ordinary surfaces with
only one characteristic exponent, and in next section we deal with the general case.

In another direction, using Mustata’s formula ([29]), we determine an irre-
ducible component of an m-th jet scheme, or equivalently a divisorial valuation
on the ambient space A3, which computes the log canonical threshold of the pair
X C A3? (the log canonical threshold for such a pair has been computed in [8],
looking at the poles of the motivic zeta function). This provides us with pairs
X C A? whose log canonical threshold is not computed by a monomial divisorial
valuation. The quasi-ordinary surface in A3 defined by f = (22 — x122)? — 23222
is such a pair. Note that for a pair C C A2, where C is a plane curve, the log
canonical threshold is always computed by a monomial valuation. See [4] and [2]
for the computation of the log canonical threshold for plane curves.

Using same ideas of [27], it seems possible to construct an embedded resolution
of singularities of X from the data of the graph constructed in this paper. We think
that such a resolution would shed light on the resolution of singularities obtained
by Gonzélez Pérez in [17], and would make more precise his answer to the question
of Lipman (see [23]) on the construction of a canonical resolution of singularities
of a quasi-ordinary hypersurface from its characteristic exponents.

Acknowledgments. We are grateful to P.D. Gonzalez Pérez and a number of
referees, for comments and suggestions which improved enormously the content and
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2. JET SCHEMES

In this section we define jet schemes of an affine scheme X, see [13] and [19]
for details. Let X = Spec C[zy,...,z,]/I be an affine scheme of finite type. For
m € Zsg the functor F,, : C-Schemes — Sets which, with an affine scheme
defined by a C-algebra A, associates

F,,(Spec(A)) = Homc (Spec(A[t]/(t™ 1)), X),

is representable by a C-scheme, denoted by X,,,. This is the scheme of m-jets. Its
closed points are morphisms of the form

7 : Spec(C[t]/(t™11)) — X.
Such a morphism 7 is equivalent to a C-algebra homomorphism
v* : Clxy, ..., 2,]/T — C[t]/ (™).

If we fix a set of generators f1,..., f, for the ideal I, the map v* is determined by
the image of the z;

T~ cho) + chl)t + et xl(-m)tm, 1<i<n,
where the relations

1) L@+ 2™ 2O 4 20 = 0 mod ¢
must hold for each f;, with 1 <14 <r. If we write

fi (:1750) + xgl)t 4+ ozgm)tm, o ,x%o) + o:%l)t 4+ xﬁ[")tm) =
(2)

=3 ED @Y, e e) ¢ mod
we have that giving a closed point of X,, is equivalent to giving a point in

V(Fz(j))ogjgm,lgzgr C A7,

where A = Spec(C[:rEO),...,xl(,m)]izlw’n). Hence we can make the following
identification
(3) Xm = Spec [; o i li=1,..m

I Jo<j<m, 1<i<r

We can give a useful relation among the Fl(j ) in terms of derivations. Let & be the
C-derivation on C[ZEEO), e ,:UE"I’)]I-:L__,” defined by

5(33?'”) =0 and 5(x§j)) = I§j+1) for 0 <j < m.
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For f € Clzy,..., 2] let O = f(xgo), . ,:c5?>), f® = §(f) and recursively
fm) = §(fm=1). By using the change of variables

¢: Clot”, . oihcica — Cl0, 2™ icicn

?e

xl@ — rlx,

we can prove that

o(f)) = riF(),
Hence we have the following description of the jet schemes, equivalent to (3), coming
from differential algebra.

Proposition 2.1. (See Proposition 2.3 in [24]) Let X = Spec (M) and
m € Zso, then
Oy

i=1,...,n

Xm = Spec
i )izizr, 0<i<m

Corollary 2. 2 Every polynomial FY is non-zero and quasi-homogeneous of degree
l mx(o) . xk s for 1<k <n. InFO_ .. FO the variables ;v,(f) for1<k<n
appear only in FO | and with ezponent one.

Example 2.3. Let X be the quasi-ordinary surface defined by the polynomial f =

23 — 323, The equations defining the 3-jets are (in both descriptions):

3 2
F(0) :z<0>3—x§°> 20° = 5O
FO = 3,0%,0) _ 3,070,009 (07 0),0) _ ¢
FO = 3,07,2) 4 300,07 _ 607,000,009 (007 0),2) 3,007 (2),(0)2

Ty T 2177 Ty Ty
03 _(1)2 0, (1 )b
a2~ 32" a:é) _ 1o(7®) = 20007

FG = 13 6,00, (1)2(2)_|r32(o)2z(3)_Qx(O)3 (0,3 _ 9y EO)ngl)xgz)

2 2 2 2
62000, ® 3,007 0,17 <o> x<2>x§ )2

2 2 (s 2 2 3 2
EERONOLNOMOBIPROLROMND _6x<10>x§ INOMOLSINOLN0
3!czﬁ(f(3 ) = 36(0°(f1))

For m > n > 0, we have a canonical projection 7, , : X,, — X,, induced
by the projection C[t]/t™ ! — C[t]/t"T!, and we denote m,, o simply by 7, :
X, — X.

Proposition 2.4. (see [11] and [13]) If X is a non-singular variety of dimension
d then for any m > 0 the projections mmi1,m @ Xm+1 — Xm are locally trivial
with fiber A%. In particular X, is a non-singular variety of dimension (m + 1)d.
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The above construction of jet schemes in the algebraic case can be done anal-
ogously in the analytic case. Indeed, as we will see in the next section, we will deal
with f € C{x1,z2}[z]. Then, for | € Z>¢, denoting by

R® .= C{x} (0> )}[mg),.. xg), (0 ),...,z(l)]kzlyg,
we have that F() ¢ RO and

(m)
'rrL Spec K .
(FO, . Fm)

We will anyway speak of the polynomials F") defining the space of m-jets.

Remark 2.5. To describe the components of (ﬂ';Ll (XSWQ))red’ since the level m is
clear from the context, we will use the notation V(I) instead of the more accurate

one Spec (@)

3. QUASI—ORDINARY SURFACE SINGULARITIES

In this section we collect some well known facts about quasi-ordinary hyper-
surface singularities of dimension two. We state everything for the case of surfaces,
though the definitions and results hold in any dimension.

An equidimensional germ (X, 0), of dimension two, is quasi-ordinary (q.o. for
short) if there exists a finite projection p : (X,0) — (C?,0) which is a local iso-
morphism outside a normal crossing divisor. If (X,0) is a hypersurface there is
an embedding (X,0) C (C3,0), where X is defined by an equation f = 0, and
f € C{z1,22}[2] is a quasi-ordinary polynomz'al; that is, a Weierstrass polynomial
with discriminant A, f of the form A, f = xl 326 for a unit € in the ring C{z1, 22}
of convergent power series and (d1,0d2) € 220 In these coordinates the projection
p is the restriction of the projection

C3 — C?, (x1,29,2) — (x1,T2).

From now on we assume (X, 0) to be analytically irreducible, that is, f € C{z1,x2}[7]
is irreducible (see [5] and [14] for criteria of irreducibility of q.o. polynomials). The
Jung-Abhyankar theorem guarantees that the roots of a q.o. polynomial f, called
g.o. branches, are fractional power series in (C{a:l/n l/n} for n = deg f (see [1]).

The difference ¢V — ¢ of two different roots of f divides the discriminant of fin
the ring C{xi/ 1/ }. Therefore ¢V — ¢U) = 27" 25,7 u;; where u;; is a unit in

(C{xl/n, 1/7’} The exponents \;; = ()\gjl), )\( )) are characterized in the following
Lemma.

Lemma 3.1. (see [15], Prop. 1.3.) Let f € C{z1,z2}[7] be an irreducible g.0. poly-
nomial. Let ( be a root of f with expansion:

(4) C = Zﬂ)\x/\.
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There exists 0 # A,...,Ag € Q;O such that .1 < X < -+ < Ay, and if My = 72
and ]\/[] = Mj—l + Z)\j fOTj = ]., o9, then:

(1) Br, #0 and if Bx # 0 then X\ € M; where j is the unique integer such that

A < Aand M ﬁ A (where < means coordinate-wise and we convey that

)\{]—i-l = OO)
(ii) For j=1,...,g, we have \; ¢ M;_1, hence the index n; = [M;_1 : M;] is
> 1.

Moreover if ¢ € C{wi/", xé/"} is a fractional power series satisfying the conditions

above, then ( is a quasi-ordinary branch.

Definition 3.2. The exponents Ai,...,\y in Lemma 3.1 are called characteristic
exponents of the g.o. branch (. We denote by M the lattice M, and we call it the
lattice associated to the g.o. branch (. We denote by N (resp. N;) the dual lattice
of M (resp. M; fori=1,...,g). For convenience we set Ao := (0,0) and ng := 1.
Moreover we set \g41 = oo.

In [15] Gau proved that the characteristic exponents determine and are deter-
mined by the embedded topological type of (X, 0).
As a consequence of Lemma 3.1 we have the following result:

Lemma 3.3. IfC is a quasi-ordinary branch of the form (4) then the series (j_1 :=
E/\EAJ- Brx> is a quasi-ordinary branch with characteristic exponents Ay, . . ., Aj—1,

forj=1,...,g.

Definition 3.4. For 0 < j < g—1 we have the germ of quasi-ordinary hypersurface
(XU),0), where XU) is parametrized by the branch ¢j. For convenience we also
denote ¢ by ¢4 and X by X9

Without loss of generality we relabel the variables x1,z2 in such a way that if
Aj = (/\5-1),/\5-2)) € Q?for j=1,...,g, then we have:
(5) AW, AAD) 2 (WD),

where 2., is lexicographic order. The q.o. branch ¢ is said to be normalized if

A1 is not of the form (Agl), 0) with AP < 1. Lipman proved that the germ (X, 0)
can be parametrized by a normalized q.o. branch (see [15], Appendix). We assume
from now on that the q.o. branch ¢ is normalized.

The semigroup Zéo has a minimal set of generators vy, ve, which is a basis of
the lattice Mp. The dual basis, {wy,ws}, is a basis of the dual lattice Ny, and it
spans a regular cone o in Nor = Nog ®z R. It follows that Z;O = oV N My, where
oY = R, is the dual cone of 0. The C-algebra C{x,z2} is isomorphic to the
C—algebra

C{O’v n ]\/fo} = {ZC)\XA | ex€e€C, Ne oV N Mo} .

The local algebra Ox = C{z1,x2}[2]/(f) of the singularity (X, 0) is isomorphic to
C{o" N Mp}[¢]. By Lemma 3.1 the series ¢ can be viewed as an element Y S x*
of the algebra C{c¥ N M}.
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The elements of M defined by:
(6) Y1 :)\1 and Yi+1 — N5 = Aj-&-l 7)‘]' fOI‘j = 1,...7971,

span the semigroup I' := Zéo +MZso + - +v9Z>0 C 0¥ N M. Analogously to
Ao and Agi1, we set o = (0,0) and 441 = oo, for convenience.
The semigroup I' defines an analytic invariant of the germ (X, 0) (see [16],|30],[20]).

Definition 3.5. The monomial variety associated to (X,0) is the toric variety

X" .= Spec C[I).

Moreover we associate with the characteristic exponents the following sequence
of semigroups:

F]':JvﬂM+’ylZZ()+"'+’YjZZ(), fOI‘jZO,...,g.

And we have the corresponding monomial varieties X7 associated to I';. We
denote by e;_1 :=mn;---ng for 1 < i < g and set e; := 1. Notice that, by (5) and
the definition of v1,...,7,, we deduce that

(7) (’79)7 s 7'75(71)) 216}( (7{2)5 s 7’752))'

The following Lemma gathers some important facts about the generators ;
and the semigroups I';.
Lemma 3.6. (see Lemma 3.3 in [16])

(i) We have that v; > nj_1vj—1 for j = 2,...,9, where < means # and <
coordinate-wise.

(i) If a vector uj € 0¥ N M;, then we have u; + n;y; € T';.
(iii) The vector njv; belongs to the semigroup I';_1 for j =1,...,9. Moreover,

we have a unique relation

(8) njy; = a9 40y 4oy

such that 0 < ' <n; —1 and o) € My for j=1,...,q.

Definition 3.7. Given two irreducible q.0. polynomials f and g in C{x1,x2}[7]
such that fg is a q.0. polynomial, we say that f and g have order of coincidence
a € Q? if a is the largest exponent on the set

{2 | £(¢9) = g(¢9) =0},

where ¢ and ¢Y9) are roots of fg.
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Definition 3.8. We associate to f a set of semi-roots

2= fo, f1, s fg = f € Clay, 22} [2).

Every f; is an irreducible g.o. polynomial of degree ng - --n; with order of coinci-
dence with f equal to Ajy1 for j=0,...,¢.

They are parametrized by truncations of a root ¢(z1/™,23/™) of f in the fol-
lowing sense:

Proposition 3.9. (see [16]) Let ¢ € C{x1,x2}[z] be a monic polynomial of degree
no---nj. Then q is a j-th semi-root of f if and only if ¢(¢) = X"+ ¢; for a unit
€; in C{zy, 22} 2].

Corollary 3.10. The quasi-ordinary polynomials f; € C{xy,z2}[z] defining X
(see Definition 3.4) for j = 0,...,9 — 1 form a system of semiroots of f. More
precisely f; is a j-th semiroot of f.

Semi-roots play an important role in the understanding of quasi-ordinary sin-
gularities. In what follows we state some results about quasi-ordinary polynomials
and semi-roots.

Lemma 3.11. (See Lemma 35 in [17]) The expansion of semi-roots is of the fol-
lowing form:

(J) (]) ) (J)
n; r T
9 fi=ri- eyt wyt fol - "+ an 2T fot e £,
where c; € C*, 0<r(j) i <myg fori=1,...,7, and

n;y; = (a?),aé”) (j)% + - (1)1% 1 < (ai,ag) +riyn + -+ Ti%Yj-

As a consequence we have the following description of f.

Lemma 3.12. For 0 <1< g—1 we have
(OO0
f:fl — dya 5 fg N Sll"'zdﬁ 5$11x2 lsz+1
where d; € C*, 0 < sgl),si < ej, and

D L 1 l
(ﬁ§ )ﬁé)) +3§)71 + - +s( )71

ni+i1€i+17%+1 =
< (B1,B2) + 5171+ -+ Si417i41

Sometimes we will write
o Zdééx?ll'? ol

with n1ei1vi1 < (81, 82) + 8171 + -+ + si41Vi41, taking into account that for
B = (5{1), él)) and s = (s(l) Sl(l), 0) we have dg s # 0.
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Definition 3.13. We define
Z; = X n{x; =0}, fori=1,2

Z1o = X N{z1 = x5 = 0}.
Moreover, the smallest number ¢ € {1,2} with the property that
Aﬁj):o, foralll1<i<gandc+1<j<2
is called the equisingular dimension of the quasi-ordinary projection p.

By condition (5) we have that ¢ gives the number of variables appearing in the
monomials x*, ..., x*. In [22] Lipman proved that the spaces Z1, Z» and Z;5 are
irreducible and described the singular locus of a q.o. singularity in terms of them.
We state his result here for the particular case of surfaces.

Theorem 3.14. (See Theorem 7.3 in [22]) Let X be a quasi-ordinary surface
singularity with characteristic exponents \i,...,\g. Then we have:

(1) Xging=2Zi2 if and only if g =1 and A\ = (%, %)
(ii)) If c=1 then Xging = Z1.
(iii) Otherwise ¢ = 2, and since )\§1) #0, Z1 C X is a component of Xging.
Moreover, if we do not have simultaneously )\;2) =0foralll<k<g-—-1
and )\éQ) = niq, the singular locus is reducible of the form Xging = Z1 U Z3.

Definition 3.15. Let X be a quasi-ordinary surface singularity with g > 1 charac-
teristic exponents. We define the integers g1 > 0 and g2 € {g1,91 + 1} as follows:

if c=1wesetgr=g2=9g+1,
otherwise (recall that we set v = (0,0)),

2 2
o =0 and 7,7, # 0,

1
Mgy +1

. 2
a+1 if 7_5,1)“ =
g2 =
g1 otherwise

Remark 3.16. The integers g1 and go describe completely the singular locus of
X for1<j<g. Indeed, first notice that

Zy={r1=2=0}
ZQ:{IQZJC_%:O}

Zhig = {(0707 0)}
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and hence the singular locus of a quasi-ordinary surface singularity X is either
a point, or a line, or two lines, or a line and a singular curve. Moreover, for
1 <5 <g, we have

Z19 if j=1and \ = (2, 1)

(10) X9, =3z if i<

ZlLJZz Zf 92<.7§g

Then, geometrically, the meaning of the integer g» is to measure the irreducibility
of the singular locus of the semi-roots, since ijmg s irreducible if and only if
1 <j < min{ga, g}

Now we define a sequence of semi-open cones keeping track of the singular
locus of the quasi-ordinary hypersurfaces XU for j =1,...,¢.

Definition 3.17. Recall that 0 = RS Let p1 = (1,0)R> and pa = (0,1)R>o be
its one-dimensional closed faces. For 1 < j <g

o if X, =71
OSing,j = o\ p2 if Xf;?ng =72 ; and ORegj = 0\ Osing,;-

0.0} F XG,=ZUZ
For convenience we define oregj = p1 U p2 for j = —1,0. Moreover we denote

OReg.g 0N T5ing.qg SIMPlY by ORrey and oging.

The sequence {ORreg,—1;---,0Reqg,g} 1S DOt very complicated, in the sense that
most of the elements are the same. Since by definition 7!5?:_1 = )\5]?)4-1: it is clear by

definition and by (10) that ’
p1 U p2 ifj<10rifj:1andfyl:(1 1)

for —1<5< o j = i e
=)= 02 Reg,j { 02 otherwise

for gp+1<j<g OReg;=1(0,0)}
Moreover notice that, by definition, we have 0s5ingj € 0Sing,j+1-
Definition 3.18. Given v € 0 N Ny, we define the following integer

g+1 if v e N,
i(v) =

min{l<i<g|vé¢N;} otherwise

We finish the section with another definition.
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Definition 3.19. For v € 0 N Ny we define the ring
Cl{ay” 2"} ifv=(0,0)

CleN 2y ifv e p

Clas M a!™]  ifvem

(C[ZCSVI ), :ch)] otherwise

4. JET SCHEMES OF Q.O. SURFACE SINGULARITIES: THE CASE OF ONE
CHARACTERISTIC EXPONENT

We describe the irreducible components of the m—jet schemes through the
singular locus of a q.0. surface with one characteristic exponent. First we define
certain algebraic varieties C¥, and prove its irreducibility. Since they cover the
whole (ﬂ';ll (Xsmg))red’ they are candidates to be the irreducible components of
m-jets through the singular locus, and we have to study the inclusions among them.

Finally we construct a graph I representing the decomposition of (7r;l1 (X Sing))
for every m, with a suitable decoration. We prove that this graph is equivalent to
the topological type of the singularity, i.e., to the characteristic exponent A. All
these results will be generalized in Section 5. Since in that section we will work with
the generators of the semigroup I' rather than with the characteristic exponents,
we will use now the notation «y instead of A (recall that by definition v = \).

red

In this section X is a q.o. surface defined by the polynomial

_.n a_b i J .k
f=7"—azfag + E CijkT1TR2",
(4,5)+ky>ny

where v = (%, %) with @ > b > 0 is the characteristic exponent. We have that

ged(a,b,n) = 1 because we assume the q.o. surface to be irreducible. Moreover, if
b = 0 then we have that a > n, since the branch is normalized.

Remark 4.1. Note that f = 2" — z¢x} defines a toric surface, non-normal in
general (it is normal if and only if a = b = 1). Therefore, in particular, in this
section we describe the m—jets through the singular locus of a family of non-normal
toric surfaces.
Let us look at some examples.
Example 4.2. Let X be the surface defined by the q.o0. polynomial
f=2z- lel + xae + 232 + 23wy2?
with characteristic exponent v = (%,O), We have that Xging = {#z = 1 =0}, and
then o
7 (Xsing) = V(xg ),Z(O), FO 7F(m)),
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. 0
since F(*) =0 mod (x% ),z(o)). Moreover

3 3 4 2 3
F1) = 32(0)22(1) — 43350) xgl) + 4$§0) xgl)xéo) + x§°> xél) + 3$§0) a:(ll)z(o) + x§0) 2D
2 2

+2x§0)x§1)xg0)z(0)2 + a:go) m§1)2(0)2 + 23:50) a:go)z(o)z(l)

= 0 mod (xg ) ©).

Analogously F® =0 mod (z} 4 ©), but FO®) = 2% mod (xgo),z(o)). Hence we
deduce that
(WZ_I(XSing))Ted = V(ﬂ?go), Z(O)), fOT' ! = 1, 2

( _1(Xsmg))red V( (0) ,2(0 2(1))
Note that, though they are defined by the same ideal ( Z(O)>, we have that

(771_ (XSing))red 7é (772_ (XSing))Ted

since (Wfl(XSing))red C A} while (75" (Xsing)),., C A3 (see Remark 2.5). For
m = 4 we have

red

4
PO = —o" 4 0O g (20,20 ),

Any jet through the singular locus has origin (0, xéo),()) € X, and since we are

dealing with a germ of q.0. surface X, we deduce that x( ) is small enough so

that —1 + xéo) # 0, or in other words, —1 + xg) is a unit in the ring (C{cho)},

4 4
Therefore, from the equation —xgl) + mgl) xgo)

vanish, and hence

= 0, we deduce that xgl) must

(7T4_1(X5z'ng))red = V(l"go)vx(ll)v ©, Z(l))'
Moreover, with analogous arguments we have
F®) =0 mod (x(lo),xgl),z(o),z(l))
F6) = @3 pod (xg()),xgl)’ ORI
F( =0 mod (J;go),acgl),z(o),z(l),z(Q))
F® = (-1 +x(0)) 52) mod (3”1 )’x§1)7 (0) z(l),z(2))
FO =% mod (2,2 2P 20 () ;@)

F® =0 mod (zgo),x(ll), Z(O) PASY 2(2),2(3)) for ¢£=10,11

4 4
FO2) = ;0% _ 7 4 (070 g (mgmﬂg )’xf)’2(0)72(1>,Z(2>,Z(3>)
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Hence we deduce the following decomposition in irreducible components:
(ng(Xsmg)),.ed _ v(x§0>, gl), Z(O),Z(l))
(WZI(XSmg))Wd V( (O) ( ) Z(O),Z(l),z(2)) for £=06,7
(ng(Xsmg))red V(xgo), 51), x§2>, 20 2D 2(2)
(W_l(xsmg))red V(a“go), (1), x?), 20 2 2@ 2B for £=9,10,11

- o4 a4
(153 (Ksing)) g = V(000,202,200 20,0007 00 9%,10)

For m < 12 we have seen that (m,,' (XSi"9)>7-ed is irreducible (note that 2> — x} +

x}wy is an irreducible q.o. polynomial and therefore (7‘('1_21 (Xsmg)),

but for m > 12 this is no longer true. Indeed,

.q 18 irreducible),

34 . 3)3
FU3) = 3,(0%,0) _ (3) x§4) + atgd) M 41:(3) x(4)mg0) + x@ 2 mod I,

where we set I = (cho),acg ),x§2),z(o),z(l),z(g),z(?’)), and (Wf3 (Xsmg))red has two
irreducible components:

V(e 2, 2?20 0 @) 26) pa2) F03) 0 {2 £ 0}

V(x( ) x§1>7 75553)72(0),2(1)7Z<2)7Z<3>7Z(4>)
The irreducibility of the first component follows by Proposition 2.4, since its generic
e V(mg ),xgl),xgz), © 72'(1),2'(2),z(‘q’),F(u),F(lS)) N {xf) # 0}
projects by w312 into the non-singular locus
Reg(V(xgo),xgl), (2) z(o),z(l),z(2),z(3)7F(12))).
Note that

FO2 = ;@7 @ L 0000 (20 40 @ 0 0 @) @),

and hence the regular part is contained in {x(13) #0}.
The same kind of argument implies that

V(xg())a x(ll)a §2)7 Z(O)a Z(l)a Z(2)7 2(3)7F(12)7 RS F(m)) n {'rgd) 7& 0}7

is irreducible, and we will prove that it is indeed an irreducible component of
(Wél(XSmg))red for any m > 13.

In the example above we have components defined by the annihilation of hyper-
plane coordinates in A3, = Spec (C[xgz , é) 2], 0,...,m- They have the property
of staying irreducible when lifted from level m to m —|— 1 We see next an example
where this is not always the case. This difference will turn out to be important
later, when studying the graph in Lemma 4.19.
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Example 4.3. Let X be the surface defined by the g.o. polynomial
f=2" =820 + adwoz + adwe2® + 2lwg2?,

with characteristic exponent v = (5, 1). We have that Xsing = {z = z1 = 0}, and
then
T (Xsing) = V(2,20 FO  Fim),

since F(*) =0 mod (:cgo), Z(O)). We have that
5 6 4
FO = 42(0)2“5(1) — 6x§0) x(ll)rzgl)xéo) — xgo) ngl) + 51‘50) zgl)xéo)z(o)

+x§0) xél)z(o) + :CEO) xéo)z(l) + 3x§0) xil)xéo)z(O)Q + x(lo) x§1)2(0)2
3 2

+2:1c§0) xéo)z(o)z(l) + 2x§0)x§1)m§0)z(0)3 + mgo) xél)z(o)g
2

+320 20 207, )

= 0 mod (mgo),z(o))

Analogously we have that F®) = 0 mod (xgo),z(o)) and F®) =

but FO = 2% pod (xgo),z(o)). Moreover F©®) = 0 mod (z
6

F® = —x&” xéo) mod (xgo),z(o),z(l)), which implies that

(5 (Xsing)) g = V (217287, 20, 20) UV (), 2, 20, 20).

0m d(x1 , (0)),
§ ,2(0) ) and

Note how V(x(lo),z(o),z(l)) is a component at level m = 5, and it is defined by
hyperplane coordinates, but ngl, (V(m§0)7z(0),z(1))) is no longer irreducible. Now,
to lift these two components to level 7 we study the polynomial F(7). We have that

0 mod (x(10)7£(11)7 Z(O), Z(l))

F =
6
—xgl) xgl) mod (xgo),xéo),z(o),z(”)
Then
W76(V(z§0),x§0), (0 ),z(l))) — V(I’(O) xgl)’xé0)7 (0 ),z(l)) U

UV (0,20, a0, 20,0
and since V(mg ) 2V 2 20 ,2M) C V(a:go),xgl),z(o) D) we conclude that

(77" (Xsing)) g = V (21”217, 2@ 2O) UV (2”2, 0, 20, 2)

3

At level m = 8 we have
S od (@0 2V, 2 )

)

F® =

6
2@ _ 0% g (2,28 2D, 20 2 0)

)

and
wgs(v(xgt)),xgm’ ) L0 M) FO)) =
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= w;; (Sing(V(x(lo), x(QO), xél), 20 z(l), F(S)))) U
U 7r9i§ (Reg(V(:EgO), iL‘éO), x(zl), 2(0) (1)) F(S)))) =
= V(xgo), :Ugl),xgo)7xél),z(o)7 z(l), 2(2)) U

UvE?,e?, e, 20 0, F&), FO) A (o) £ 0}.

We will describe the irreducible decomposition of m—jets through the singular

locus as
(7! (Xsing)),ea = U €
veF,

for a certain finite set F,,, C Z? and certain irreducible sets C¥, that we proceed
to define. First we recall, in the case of only one characteristic exponent, some
objects described in Section 3 in general.

The notion of equisingular dimension ¢ was given in Definition 3.13. By The-
orem 3.14 we have the following description of the singular locus of X (recall that

the characteristic exponent is v = (£, 2) with a > b > 0),
{z=21=0} ifc=1 (i.e. b=0)
{(0,0,0)} ifc=2anda=b=1
{z=2,=0} ifc=2anda>1,b=1
{z=21=0}U{z=22=0} ifc=2andab>1

From Definition 3.17 we have that

o

S =)
Tsig = o\ = (58 o= (2,0)

o\ {(0,0)} otherwise

where recall that o = R, and p1 = (1,0)R>¢ and p2 = (0,1)R>¢ are its one
dimensional faces.
Given v(t) € X,,, with z;07(¢t) # 0 for ¢ = 1,2, we have that ord(z;o(t)) > 0.
Hence
v := (ords(z1 0 ¥(t)), ord¢ (22 0 y(t))) € o N No.
If we add the condition 7, (v(t)) € Xging then v € oging N No. Moreover it is clear
that 0 <y; <mfori=1,2.
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Definition 4.4. Given a positive integer m and v € 0ging N[0, m]2N Ny, we define
an algebraic variety C%, C A3, as follows (recall Remark 2.5).

o If m < (v,nv),

cr =V (acgo), . ,xiyl_l) 20 x§”2‘1), 20

s lg ey PR

,Z<[m/n}>)

Note that C¥, is a non-singular algebraic variety of A2,.
e Ifm={(v,ny) andv €N,

C?ww) =V (x(lo), . ,xi"l_l), xgo)’ . ,;L'(Zyz_l), z(o), ce z(<”’“’>*1), F(<”’m>))

Note that C¥, is not well defined if v € No \ N since (v,7) is not an integer.
The polynomial FY*"7) modulo the ideal

(x§0)’ . ,scgyl_l), a:éo), .. ,xg/z_l), 2(0)7 o ,z(<”’”’>71))

1s studied in Lemma 4.5, and it turns out that Cé’y )

of A2,

s a singular algebraic variety

e Ifm>(v,ny) andv € N,

CZ,L = Tr;:(r/,n'y) (Reg (C(Du,n'ﬁ))

where the overline denotes the Zariski closure and Reg stands for regular locus.

It turns out to be crucial to understand the variety Cé’y )

Lemma 4.5. For v € 0ging NN we define

Flomn) — (™ _ 000 | S e 2 ) L (wank
where the sum runs over i, j, k subject to the conditions: the monomial cijkazﬁxgzk
appears in the g.o. polynomial f and (v, (i, j) + kv) = (v,n). Note that, if v o,

the sum Ecijkxgyl)zng)jz“”?'mk in FSY™ s zero.
We have that

Fvmm) = F,£<”’m>) mod (x(lo), e ,x&”l_l), a:éo), e ,xé”rl), 20 z(<”’7>*1)),
and hence
C’é’y,nw = V(:v(lo), . ,azgyl_l), zgo)’ . ,33(2%“_1), Z(O), ce z“”’”’)*l), FV(<”’”7>)).

Fln)

In particular observe that is a q.0. polynomial in R,[z(")] (see

Definition 3.19).
If v € oging N (NO \ N) we define

a b i j
G T SN
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where cl-jomix% is a monomial in f and (v, (i,7)) = (v,ny). Then

FUmn) = plvma) o (:rgo), ce x§”1_1)7 :réo), .. ,xé”rl), 20 z(K”’mm)
The sum Zcijoxgyl)lxg“)]
v e ppUps

is non-zero if and only if v € p1 U pa. Moreover, if

a b
FIE<V7"’Y>) — _l.gl’l) wéw) U
where U is a unit in R, .
Proof. If v € N, we have by definition that the polynomial F(*»") modulo
the ideal (xgo), ... ,x&yl*l), xéo), ... ,xé’jrl), 20 z(<”’7>_1)) is of the form
n v (o) ) ] )

L) _xg 1) x; 2) +Zcijk xg ) xéﬁ)]z(‘s)k

where the sum runs subject to the conditions

(i,7) +ky >ny
i+ 3B + ko = (v,ny)

a>wvy, >, 02> (1,7)
If there exists at least one c;;; # 0 under these conditions
(v,ny) =ia + B + k6 2 ivy + jra + k(v,y) = (v, (i, J) + ky) = (v,n),
then all inequalities must be equalities and we deduce that
a=uv, B=vyand 0 = (v,7).
Then, the condition i + j8 + ké = (v,ny) is (v, (i,7) + kvy) = (v,ny), and this
only holds if v € p; U ps.
If v € Ny \ N, first note that
(v, M) < (v) <[]+ 1.

By definition F(*»") mod (mgo), ey xgyl_l), méo), . ,xé”rl), 20 z([<”’7>])) is
of the form _ _
—mgyl)aﬁ(zVQ)b + Z qujk%ga)zxéwzw)k
where the sum runs subject to the conditions
(1,7) + kv > ny
ia+jB+ kd = (v,ny)

a>wvy, B, 62 (7)) +1

If there exists at least one c¢;j, # 0 with 4, j, k under these conditions and moreover
with k£ > 0, then

(vyny) =ia+ B+ ko >ivy + jra + E([(v, V)] + 1) > (v, (4,5) + ky) > (v, ny)
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Therefore we must have k = 0, and then

(v,ny) =ia+jB > (v, (i, §)) > (v,n)
Hence o = v; and 8 = 1. As in the case v € N, the sum ) cijoxgyl)lxg’z)] is non-
zero if and only if v € p; Ups since the conditions (4, j) > ny and (v, (¢,7)) = (v, n7y)
are compatible if and only if v € oging N (p1 U p2)-

If v € py then B = — 5””“ (0)° + > cijox (Vl (0) with the conditions
1,7) > (a,b) and (v,ny) = (v, en ¢ = a, and therefore j > 0. Hence
(i,4) > (a,b) and ( ><()>Th dhf'bH
b
Flnn) — o), 0) (Hz%oxz ()9~ )

(0)J—b . . (0)
and 1+ )" ¢j0m5 is a unit in C{zy’'}.

If v € py the proof is analogous, simply noticing (by the definition of g5) that,
since v € 0sing, we must be in the case b > 1. O
Example 4.6. Consider the q.0. surface defined by f = 2° — xjx3 + 23232, with
characteristic exponent \ = (2, 5) For v =(2,0) we have

Fy(s) = 2(4)2 — 1752)41‘50)3 + x(12)23:éo)22(4).

4 (03
Obviously we can not write F® as 2% - ngz) xg)) -U with U a unit, as we have
proved in Lemma 4.5 that it is the case when v ¢ N. Notice however that

V(F®) N {af? # 0} n{af” # 0} € £z £ 0},
this will turn out to be crucial (see Corollary 5.16 for a complete statement in the
general case).

To understand completely the sets C¥ for m > (v, nv), we need to study the

regular part Reg (C"’V ) ) It is closely related to the regular locus of X, described
in (11).
Lemma 4.7. For v € 0ging NN, let us denote
JV = (xgo), e ,aj(lulfl) xgo), e ,xgu271)7 PACI z(<y"y>_1))

We have:

() ifv= (3 2)

Reg (C Vn"/>) = C<”V’m>
and, as a consequence, for m > (v, ny),

Cyy =V (g7, ) pm)

(ii) otherwise v = (2,2) witha>1 and

Y,y N {2 £ 0} ifbe {0,1}

Reg (Cély,n'w) = ) o)
Clonpy N {z7" #£ 0} n{xy™ #0}  otherwise
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As a consequence, for m > (v,ny) and b =0 or 1, we have that

Cy, =V (Jv, ), F)) A {2 # 0
while for m > (v,ny) and b#0,1,

Cv =V (Jv, P R A ) £ 030 {282 £ 0}
Proof. We distinguish cases according to the description in (11) of the singular
locus.
(i) If v = (2, 1) the claim of the Lemma is clear, since the singular locus of

n’n

such a q.o. surface is the origin.
(ii) If v = (%,0) we have to prove that, in Cl, nry)» the conditions xlyl) #0
and z(("")) £ 0 are equivalent. By Lemma 4.5,

F{m) = ()™ _ g0 | § P N (DL

is a defining equation of C?un'y)‘ If the sum in is empty the claim

is obvious. Otherwise v € p1 U py and, since v € 0ging, we deduce that
v € p1. Then

F{m) = ()™ _ g0 | § cijea 20 (At

R

with (v, (¢,7) + kv) = (v, n7), or equivalently
V1 (Z + kg) = Vlng
n n

This implies that i + k% = a, and since 0 < k < n and ged(a,n) = 1, we
deduce that ¢ = @ and £ = 0. Then j > 0 for any cqjo 7# 0 and we can
write F"™) as

F;E<V’7w>) — L™ _ x(lVl)a + Zj Cajofgyl)al’goﬂ

Since 1 + anjozcgo)j is a unit in R, = (C{xéo)}[x(lm)], it does not vanish,

and the claim follows.

(iii) If v = (3 l), by Lemma 4.5 we have that

n’n

Fy((u,n'y)) _ Z((U,'y))n . xgul)axguz) + ZCijkxgyl)ixgl/?)jz(<y”y>)k

where the sum runs over (¢, 7, k) such that (i,7) + kv > (a,1). Therefore
we deduce that for any such (i, j, k) we have ¢ > 0 because 0 < k < n. It
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follows that if z{"") = 0 and F{"™ = 0 then we have that (") = 0.
Hence

Reg (Cl,,0y) = Clpy M2 £ 0V O, {2 £ 0F = €, N # 0}

(iv) If v = (%, %) with b > 1, we have that

Reg (Ozjlan’y)) = C?V,n'y) n {xgl’l) 7é 0} N {xéVZ) # O} Uczjym’y) N {Z(<V77>) 7é 0}

and we claim that C7, N {2(v) £ 0} = Clynmy N {mgul) #0}N {a:g”) #
0}. Indeed, by Lemma 4.5 it follows that

a b ) j ]
Fmn) = o)™ g’ 4§ e () 2 (v

is a defining equation of Cé’y ny)-

Otherwise v € p; U pa. Let us suppose that v € p; (the case v € po

is completely analogous). The monomials on the sum are of the form

cijk:z:gul)zxéowz“‘””))k with ¢ + k% = a and j + k% > b. In particular we

deduce that i,j > 0. Therefore if F\"") = 0 and either xﬁ"l) =0 or
xéo) =0 it follows that z((*") = 0. And conversely, if z({*??) =0, then

If the sum is zero, the claim is obvious.

F{wm) (2, = 0) = _xgvnax;o)b U

with U a unit in (C{xéo)} (because if we impose £ = 0 on the conditions
i+k%=aandj —|—k% > b we obviously obtain ¢ = a and j > b). Then the
result follows.

O
Definition 4.8. We define the set A, U By, C 0ging N [0,m]?> N Ny as
A ={V € 05ing N [0,m]2 N Ny | (v,n7y) >m}
B, ={v € 05ing N [0,m* NN | (v,ny) < m}

- pB= <
Moreover, we decompose the set By, as By, = B, U B}, where

B; :{yeUSingﬂ[O,m]2ﬁN | <l/,7’l")/> :m}

By, ={v € oging N [0,m]>NN | (v,ny) < m}

Remark 4.9. Notice that, for m € Z~, the set B, is
By, ={v€osingN[0,m* NN | avy + by < m}

={v € g5ing N[0,m]* N Ny | ‘wlnﬂ € Z and avy + bvy < m}
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For any m > 0 and any v € A,, U B,,, we have defined an algebraic variety
C7 in Definition 4.4. These are the candidates to be the irreducible components

of (77;11 (Xsmg)>red‘ To prove this assertion we need to make sure that these sets
are irreducible, and that they cover (m,.'(Xsing)). -

Lemma 4.10. For m € Z~gy and v € A,, U By, we have that C¥, is irreducible.

m
Moreover its codimension is:
I/1+V2+[%] ifVGAm
Codim(Cl,) =
n+uve+v,y)+m—(v,ny)+1 ifveB,

Proof. For v € A, U B, the claim is clear by definition and by Lemma 4.5.
If v € By, it follows by Proposition 2.4. O

Lemma 4.11. For m € Z~q,

(77:”1 (XS”L-‘]))red = U C;;L

vEALUB,,

We
belongs to certain C¥, with

Proof. By definition we have that U,ea, up,, Ch C (ﬂ';ll(Xsmg))

mUBm red’
have to prove that any m-jet v(t) € (7, (Xsing))
veA,UB,.

red

e Suppose first that x; o y(t) # 0 for ¢ = 1,2. Then we set v := (ords(z; o
v(t)),ord(z2 0 ¥(t))). We have that v € gging N [0,m]2 N Ny, and we only need to
prove that if (v,ny) < m then v € N. Indeed, let us suppose the contrary, that
m > (v,ny) and v € Ny \ N. We define the ideal

J = (:cgo), Lt g ,xg”rl)).

Note that y(t) € V(J)n{z" # 0}n{z"*) # 0}. Using that foy(t) = 0 mod ™!
we deduce that
v(t) e V(J+ (9, .. .72([<w>]))) n {x§”1> 201N {xéyz,) 20}
and that
lvny) = _g;§U1)axéu2)b+Z Cijkxgl/1)ixglz)jz([(%')’”‘f’l)k mod J+(z(°), 3 "Z([<u,»y>]))

where the sum runs under the conditions (¢, j)+ky > ny and (v, (4, 7)) +k([(v, )]+
1) = (v,ny). But, since v ¢ N we have [(v,7)] +1 > (v,7), and then

v, (i,9)) + E([(r, M + 1) > v, (i,4) + k) = (v, 17)

a b
and we deduce that F(»77) = —:ci”l) a:gyz) mod J + (2@, ..., 2»D) " Since
b

a
(1) xé”?) is non-zero, this contradicts the fact that y(t) € X,

we have that z;
because (v,nvy) < m.
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e Suppose that z107(t) = 0 and z207(t) # 0. We set vy := ord; (z207(t)) < m.
Note that v := (m,vs) € A, and since y(¢t) € C¥, we are done.

o If 1 o y(f) # 0 and x2 o y(t) = 0 then we set v := (ords(z1 0 ¥(t)), m). We
have that if b # 0 then (v,ny) > m and therefore v € A,,. If b =0 and arn, <m
we can prove, arguing as in the case x; o y(t) # 0 for ¢ = 1,2, that v € N. Then
v € Bp,. In both cases (b= 0 and b # 0) we have that v(t) € C¥

m*

o If x;07(t) # 0 for i = 1,2, we set v := (m,m). We have that v € A,, and
~(t) € CE,. O

The description given in Lemma 4.11 is not the decomposition in irreducible
components, we still have to study the inclusions among the sets C},.

Let us denote by < the coordinate-wise order:
v<v <<= VvVev+to
(12)
— vy, <y fori=1,2

Then, given v,/ € A, U By, such that v £ v/ it is clear that C¥, ¢ C¥ , since for
any v, by definition, we have

Cy C V(ajgo),...,Igyl_l),xéo),...,x

élfz—l)).

Therefore we have to consider v, v’ € A, U By, with v < v/ and study wether we
have the inclusion C}, C C¥, or not.

m

Definition 4.12. We define, for m € Z~q, the relation <,, on A,,UB,, as follows,

V' —V € ORego ifv,v € AynUB;L
v < V' if and only if
V' — VU € ORega otherwise

Remark 4.13. Note that if v <,, V' then v < V'

We have defined, for every m € Z~q, a partial order <,,, on Z220~ Hence, given
any subset R C Zéo, we may consider the set

mine, R={v € R | # w € R such that w <, v}

Theorem 4.14. The decomposition of (77,;1 (Xsmg))wd in irreducible components
is given by
(7! (Ksing)),ea = U o
veF,
where F,, = min<, {A,, UBpn}.
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7_(%70) ’7:(%u%) Py:(%a%) ’Y:(%y%)
H
BS | An I\ Am + \ A
B<E Bs Ap, B,
m = (v,ny) m = (v, ny) m = (v,ny) m = (v, )

FIGURE 1. A sketch of the different orderings <,,, in the case of
one characteristic exponent.

Proof. Notice first that, for v,v" € A,,, we have v <,,, v/ if and only if v </,
simply because A,, C Ny and 0reg,0 = p1 U p2. See Figure 1 for a sketch of how
the relation <,, acts on A, UB,, for the different cases depending on . Moreover,
for any v € A,,, by definition we have

cr = V(xgo), e xgulfl),xéo), . ,a:glzfl), 20 z([m/"])).
Then it is clear that, given v, € A,,,

vV ev4o — CY CCY,

and we deduce that

Ua-= U a

vEAm, ueminSAm

where recall that by definition v < v/ if and only if v/ € v + 0.

To prove the statement we distinguish cases depending on .
(i) If y = (%, 1), the relation is
v <, v ifand only if v/ — v € p; U py
for any v,v" € A, U B,,. Moreover ging =& and
Ap ={v co N[0,m]* N Ny | v1 + vg > m}

B, = {V 68 ﬂ[O,m]2 NN | v +1vy < m}

We distinguish two cases, m < n and m > n.
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If m < n then B,, =0 (since (v,7) = 22 e Nand vy + 1, <m <n
are incompatible conditions) and therefore

F,, =minc, A, =mincA,,
={ves NNy | 1 +vp =m+1}
={(1,m),(2,m—1),...,(m, 1)}

If m > n, we have that
BO = {(1,7171),...,(7171,1)} gBm

and

A, UB,, C U (v+o0)
veBO

Let v/ € A,, U B,, \ B, we will prove that there exists v € BY such that
C¥ C C¥. There are two cases:
eIf v/ € A, then

cY = V(xgo), . :vg”{_l) (0) xé”é_l), 20 z([m/”]))

ol ce STy
Let v be any point in BY such that v’ € v+ . Then

cr = V(xgo), . ,:L‘gyrl)7xéo), .. .,méuz*l),z(o),F(”), .. .,F(m))

m

We claim that C¥ C C¥

m — m*

Indeed, first it is clear that for i = 1,2
:z:l(.o), . ,ozgy'i_l), 20 e (xgo), cee zgui_l), xéo), e ,zgjé_l), 20 z([m/"]))
We have to prove that, forn <1 <m

FO ¢ (cho), . ,xgyifl), xgo), . ,mg’éfl), 20 z([m/"]))

How does F® look like? Tt consists of monomials of the form:

Slan) ... (an) with a; <land ay + -+ a, =1
2P () with b1,02 <l and by +by =1

xgﬁ) - ximl)xgsl) . -xésaz)z(tl) —ozt) ith vy, st < 1, and

Yorit . sitd ti =1

with the condition (ay,a2) + kv > nvy (we are just deriving the equation
F(©) [ times and forgetting about the coefficient of each monomial). Let us
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impose now the conditions

a;,t; = [%] +1
b1,7“7; Z I/i

b, 5; > Vg
which correspond to the fact that we are interested in the equation F(®)
modulo the ideal

@, 2WD g0 gD 0 (mym)y
Then we have that

l:a1—|—~--+an2n([%]+1)>m

which is impossible. Moreover
l=b+by>vi+vh>m

since v’ € A,,, and this is a contradiction. Finally

I =ri+ - 4ra, +51+ 4+ 8ap+t1+ -+
(V') (o, a2)) + K([] + 1)

(', (1,1) = ky) + k(7] + 1)

(v +v5) (1= 3) + k(2] +1)

>mAE([2]+1-2)>m

n

v Iv

Then we have proved that for I < m

F® =0 mod (xgo), e ,xgyi_l), xg0)7 e ,x;”é_l), 20 ,z([m/"])).

)

o If v/ € B,,, the strategy is the same, and we can prove that C’jq’; ccy,
for any v € BY such that v/ € v+ 0. Indeed,
C,l;; = V(argo), .. 73351,171)7 xéo), .. ,xéyéfl), z(o), ... ,z(<”l’“’>_1), F(<”l’"'y>), ey F(m))
and
Ccy = V(mgo), . 735:(['/171) xéo)

5 yoeey

xéwfl)’ 2(0)7 F(n)’ e F(m))
We only have to prove that for n <1 < (', n7)

FO e (20, a0 g0 2D 0 L a)-D)

In this case note that v/ + v4 < m and v € N. The monomials of F() are
described in the previous case, but now the conditions we impose are

aiati Z <V/77>
by, > 1]

/
b27 Si Z Vy
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Then
l=ai+ - +a,>n{,7)
which is impossible. Moreover
l=by+by > +vh=n{7)
another contradiction. And finally,

l :7”1+"'+7'a1+31+"'+5a2+t1+"'+tk
> avy + ot + k(V'Y)
= <V/a(a17042)+k’}’> 2 n<yl77>

Then we have proved that
F® =0 mod (wgo), e @5”4_1), w§0)7 e ,mgyé_l), 20 ,z(<”/7”’>71)),

and the claim follows.

(i) If v = (£,0), we have that gcd(a,n) = 1 and a > n (recall that the g.o.

n’

surface is irreducible and the branch is normalized). We have that

Ay ={v € 05ing N[0,m> N Ny | avy > m}

By, ={V € 05ing N [0,m]> NN | avy <m}
Then, in this case, min< A, consists of a single element, and
U cn=cn
vEA,

where v* = ([] 4 1,0) is the smallest element (with respect to <) in A,,.
For v,V € B with v/ —v € py we have that C¥, C C¥,. Indeed, we have

that v/ = v+ (0,r) with r € Zso, and then (v,v) = (V/,v). Then (recall

the notation J" = (atgo), . ,xi“ﬁ”, 33(20), . ,xéyrl), 20 (rm=D)Y)

m

Cry, = V(¥ FUrmD) L FOm) 1 {af™) £ 0}

cy =V (Jv, Flwm)) . Fom) A {2 £ 0}
and the claim follows. Therefore,
Joa-= U @
vEB, veming, By
and using that in this case
v € N if and only if v+ r(0,1) € N, with r € Z

we deduce that
min<,, B, C N x {0}
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So far we have that
(ﬂ—;ll (XSing))y-ed = U C;;m
ve{v*}UB; U min<, B
Given v,V € min< B, with v < v/, then v = (11,0) and v/ = (v, 0) with
vy <vjyand 112,118 € Z, and by Lemma 4.10 we have
Codim(C%,) — Codim(C% ) = (v, — vi)(a—1- E)
n
and since a > n > 2 we have that an > a + n and we deduce that
Codim(C%,) > Codim(C¥,) and therefore C¥%, ¢ C¥.
o If B, =), it is because m % 0 mod a, and then
Fr = {v*} Uming,, B
since v* is not comparable by <,, with any element in B5. We have to
prove that for any v € min<, By we have C% ¢ C%. By Lemma 4.10 we
have
Codim(C%) — Codim(C% ) =wv +1 % +m—rvia—[2] —[2]
—m -y onsesn () — [
=T Aml—- g - ) e = (R - [T
i v Rl by B S 2

which is positive since m > av; and “*=*=" > 0. Hence dim(C%’) >
dim(C%) and therefore C% ¢ C¥,.

e Suppose now that B, # 0 (i.e. m = 0 mod a) and let us denote
v° = (m/a,0) its smallest element. Then v* = (m/a + 1,0) and v° < v*.
We claim that C% C C% . Indeed, we have

Cr =V (@, .. 2™ L0 mm)

Cr =V, L0 mme) )
and, by Lemma 4.5,

PO = 200/ a0 137 (™ 220 mod

Since there are no monomials of the form cojoxéo)], F(™) =0 mod J*" and
the inclusion C% C C' follows. Then

F,, = {v°}Umin< B

=m m

This is the description in irreducible components, or in other words, there
are no more inclusions among the sets C},. We only need to prove that for
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o . .
any v € By, we have C%, ¢ C% . And this follows since

m )cm—a—n>0

Codim(C%) — Codim(C% ) = (E -1 -

If v = (2,1), we have
A, = {l/ € 0Sing N [O,TTL}2 N Ny ‘ avy + vp > m}

By, ={V € 05ing N[0,m]2 NN | avy + v2 < m}

If v,/ € By, with v <,,, v/, then v/ = v + (0,rn). Let us prove that
C’,’;L' C Cr,. We have

Cryn = V(JV7F(<V,7Z’Y))7 B .,F(m)) n {mglﬂ) £ 0}

cy =V (Jv, PO R 0 {2 £ 0}

and since v] = vy, v > ve and (V',y) > (v,7), it is enough to prove that
for (v,ny) <1< ¥, ny),

FO ¢ (ﬂcgo), cee a?guifl), gcg)), .. ,33(2"5*1)7 20 Z((v/,'y>—1)>
The monomials in F) are of the form
o zlen) with ¢; <landeci+---+c¢, =1
e glbe) ) with b; <l and by + -+ bay1 = I

o ~x§rﬂ1)m§‘sl) e x;s”)z(tl) o2 with g, st < 1and

with the condition (aq,as) + kv > ny. Imposing the conditions
Ciatj Z <V/77>
bi, Tj Z Vi
ba+1; Sj 2 Vé
on the monomials of F(), we have
l=ci++4c, >, ny)

L=bi++bo +bap1 > avf + 14 = (v, )

l:T1+"'+Ta1+51+"'+5a2+t1+"‘+tk
> aqvy + g + k(Y 7)
= <V/,(a17042)+k’)/> 2 <V/7’I’L'7>
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and hence we have proved that for (v,ny) <1 < (v, n7y)
F® =0 mod (:vgo), e ,x%yi*l),méo), e ,xéué*l), 20 z(<”/’7>_1))
If there exists v° € By, and v* € min<,, Ay, such that v° < v*, we claim
that C¥ C C¥’ . Indeed,

C,’;: = V(xgo), e ,xgyf_1)7 :réo), cee xé”§_1)7 20 AT =1 F(m))

C,”n* = V(xgo), . ,x%yffl), a:éo), e 73651/;71), 20 ,z[m/”])
and since m = (V°, ny), and
vy <vf, fori=1,2
<VO7’Y> -1< [%] = <Voa,7>
by Lemma 4.5 it follows that
F™) =0 mod (a:§°), o ,xiyf*l), a:(QO), o ,xgj’jfl), 20 ,z(<”*’7>)).

To finish we have to prove that given v, € F,,, with v < v/ we have that
C¥ ¢ C¥ . Notice that the only choice is that v € B, while v/ € A,,UB,,.

First consider v € B and v/ € B,,. By the definition of <,, we have
that vy # 14 and vo, V5 < n (since v € N if and only if v — (0,n) € N). By
Lemma 4.10,

Codim(C%) — Codim(C%) = (V' —v,ny —v — (1,1))

= (V] —vp) 8= — () — 1)t

and we have Codim(C%,) — Codim(C% ) > 0 since 2="2 < 1, v} — vy > 0
and 4"=2=" > 0, and Codim(Cy,,) — Codim(C¥') is an integer.
Suppose now that v/ € A,,. By the inequality above it is enough to

prove that C% ¢ C¥ for v € By, with v, maximal. Then v — vp < n. If

V' = (v1,0) then v = (v1,0) and the proof goes as in case (ii). Otherwise

v' —(1,0) ¢ A, U By, and then (v — (1,0),nvy) < m, therefore
(V' ny) =m+1

since v € A,,. We have

Codim(C%) — Codim(C%) = ( —v,ny —~ — (1,1)) + 1

(iv) If v = (%, 2) with b > 1, we have

A ={V € 05ing N[0,m]* N Ny | avy + bvy > m}

By, ={V € 05ing N [0,m]> NN | avy + by < m}
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If v,/ € A, UBZ we have that C¥, C C¥ if and only if v < 1/, as in the
other cases. Moreover, since oreg,1 = {0}, we have
min<, By, = B,,.

<

< with v </, we have

For any v,/ € B

/ —a-— bn—b—
(13) Codim(C%,)— Codim(C%) = (v} —yl)w )T S

since an > a +n and bn > b+ n. Hence C’,’;{ ZCy.

We still have to prove that for v € By, and v/ € min<, A, U B, with
v<v,
Codim(C%,) — Codim(CY,) > 0.
Note that, by equation (13), it is enough to prove it for v € By, maximal
with respect to <,,. We set mg := (v,ny) < m. We have that v € B,
and

(Tt (C)), oy = Cl oy UCLELD gt (O
where
Codim(Cy,,41) = COdim(OZ;gS:{O)) = Codim(q’j;gfl’l))
Since we have
G = V(I P, FOW) 0 ™) 2 0p 0 {a™) # 0}
then

Codim (C},) = v1 4+ v2 + (v,7) + m —mg + 1 = Codim(C},, ) + m — my.

The component associated to v/ (i.e. C¥ ) must come from either v+ (1,0)
or v+ (0,1) (or even both). More precisely, when lifting the component,
say C,';;:(l"o), to higher levels we will pass from v + (1,0) to v/ as follows, if
we set m; := mo + 1 and vV := v 4 (1,0),

(1) (2)

v v v ()
Cy, —Ch, — - —Cp

with m, = m and v =1/,

mog+l=m <mo<---<mp,=m
and
Z/(Z)GAmz.

Moreover we have
i—1)

Codim(C% ) = Codim(C% _}) + 1

m;

Here we use that v is maximal in B and v/ minimal in A,, U B, and
therefore there may not exists v € B,,, such that

v<v<v
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Hence

Codim(C%) < Codim (CH5O) 4 m —mg — 1

= Codim(CY%, 1) +m—mo — 1

Cr)+m—mg
Cri)

(
(
= Codim
= Codim

O

Remark 4.15. This result is to be compared with the case of plane curves with
one characteristic pair studied in [24] (Corollary 4.4), and with the case of A, -
singularities studied in [26].

Remark 4.16. If v = (1 1) we have just proved that

n’n

v .
Ul/Et:OT,V1+1/2:m+1 C"l Zf m<n

U cr ifm>n

o
vEo,V1+ra=n

that is, the number of irreducible components of (71';11 (Xsmg))red ism if m <n and
n — 1 otherwise. In particular, observe that this number stabilizes. If v # (%, %),
the cardinal of F,, does not stabilize.

4.1. The graph. As we pointed out in Remark 4.15, the result in Theorem 4.14
has to be compared with some particular cases in [24] and in [26]. In those papers
it was proved that the structure of the jet schemes determines the topological type
of the singularity. We devote this section to prove the same result, for any q.o.
surface with only one characteristic exponent.

Definition 4.17. We construct a graph T' by representing each irreducible com-
ponent of (ﬂ-;ll(XSing)>red by a vertex Vi, and joining two vertices Vi, and
Vim+1 of Tm41,m induces a map between the corresponding irreducible components
(see Definition 5.34 for the general definition). We weight the graph by giving the
embedding dimension (e) and the codimension (c) of any component. Then a vertex
at level m is denoted by V(e c).

We say that there is a splitting in the graph at level m whenever there is more
that one vertex at level m projecting to the same vertex Vi,—1(e, ¢) at level m—1. If
e+ c = 3m then we say that the splitting is of first type, and otherwise the splitting
is of second type.
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Remark 4.18. Notice that if C¥, is a component of (W%l(Xsmg)),,_ed such that
(77_1 (C;;L))Ted is reducible, there is a splitting only if the components of the

m—+1,m

lifting (W;i-l,m(cvlv/%))red are also components of (ﬂfni_l(Xgmg))red,

For instance, let f = z°—x3x5 be the q.0. polynomial with exponent y = (%, %)
At level m = 3 we have

(75 (Xsing)) oy = V(@ 21V, 20) UV (27,2 2©@) = ¢V v Y,
and (775%(03()1’1))) = V(xgo),xgl),a:go),z(o)) U V(argo),xéo),:cél),z(o)) = C’f’l) U

Cil’z). But this does not correspond to a splitting in I, since (774:% (C?Ez,o)))
V(wgo),xgl),z(o)) = Cf’o) and Cf’l) C Cf’o). Therefore

red

red

red =

_ 2,0 1,2
(7'('4 1(XSi”9))red = Cﬁi 0 U Czi )

We prove next how these splittings permit to extract information about the
q.o. singularity, more concretely, about the characteristic exponent.

Lemma 4.19. Let ' be the graph describing the jet schemes through the singular

locus of a q.0. surface with one normalized characteristic exponent (% 9).

‘n
(i) If there are splittings where three vertices at level m+1 project into a vertex
at level m, then b > 1.

(ii) Otherwise b € {0,1} and we have the following possibilities.

(ii.a) If every splitting is of first type, then a = b= 1.

(ii.b) If every splitting is of second type then either we have b = 0 or we

have b =1 and n divides a.
(ii.c) If there are both types of splittings then b =1 and n does not divide a.

Proof. First note that if I' is the graph describing the jets through the singular
locus of a q.o0. surface with one normalized exponent -, then in I' there must be
splittings. Indeed, it follows by Remark 4.16. Suppose first that v = (1, 1), then
at level m = 1 there is only one irreducible component V(xgo),:réo),z(o)), and for
m big enough there are n > 2 irreducible components. When v # (£, 1) we have

one or two irreducible components at level m = 1 and the number of components
is not bounded as m grows.

Note also that with the data of the weights we can deduce that the vertex
Vin (e, ¢) corresponds either to a component C¥, with v € A,, (if e+¢=3(m+1))
or v € B, (otherwise). Hence we can also define the types of splittings as follows,
if there is a splitting at level m projecting to a vertex V,,_1 (e, ¢) corresponding to
the component C},_;, we have:

e splitting of the first type if and only if v € A,,,_1,

e splitting of the second type if and only if v € B,,_1.
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First we prove that if a > b > 1 there are always splittings (necessarily of
second type) where three vertices project into one vertex of the graph. Later we
will see that this only occurs in this case. Since the relation <., on By, in this case
is v <, v if and only if v = v/, we deduce that for m big enough, there exists
v € By (and therefore v € F,) of the form v = (v1,0). Set mg = (v,ny), then
v € B_ and

mo

-1 v _w v+(1,0) v+(0,1)
Tmo+1,mo (C ) - Cmo-‘rl U Cm0+1 U Cmo+1

mo
We clearly have v € F, 41, and the question is whether v + (1,0) and v + (0, 1)
belong to F,,+1 or not, to know whether we have a true splitting or not (see
Remark 4.18). We have that v + (1,0),v + (0,1) € Aypy+1, since

(v+(1,0),nvy) =mo+a>mg+1

v+ (0,1),ny) =mog+b>mg+1

Moreover we have that v+ (0,1) € Fy, 41 since there isno v’ € A, 41 with v/ <wv
because v = (v1,0), and there is no v’ = (11,0) € B;, ., with v{ < vy, since this
would contradict that v € B, . To finish we have to prove that v+ (0,1) € Fyyq1.
Suppose there exits 7 > 0 such that v = v 4 (0,1) — (r,0) € A1 U By, 4 (this

would imply that C:gfl’l) - C”/;H), then

m
m0+b77’a2m0+1
or equivalently b > ra + 1, which is impossible if r > 0.

To study the splittings at level m + 1, we have to study the irreducibility of
7t (C¥) with v € F,, C A,, U B,,,. We distinguish cases:

m—+1m m
(i) If v € F,;, N Ay, we have the following possibilities.
(a) Im+1< (v,ny), then v € A4, and

bt (Ch) = C¥ .y irreducible

m+1m m

Indeed, by definition C%, = V(xgo), . ,x(l'/l_l), xéo), . ,x(;?_l), 20

Then
wfn}i_Lm(Cfn) = V(xgo), cey xgulfl), xéo), e ,a:é”zfl), 2O R m/mD), F(m+1))
where
FmHD mod (mgo), .. 73351/171)’ J;go), . ,ﬂcéyrl),z(o), R z([m/"])) =

Zm/n+D™ i +1 =0 mod n

0 otherwise

since m+1 < (v,n). Notice that if m+1 =0 mod n then [] +1 =
m+1

2/,
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(b) f m+1=(v,ny) and v € N, then v € B, and

v cr)y=:acy

41 irreducible

m+1 m m
since 7rm+1 m(Ch) =V (J”, F(m+D) and by Lemma 4.5 we have
FmtD) = FV(’”H) mod (acgo), e ,a:ﬁ”l‘l), xéo), e ,xg/z_l), PAI z(<”’7>71))

where FV(mH) is an irreducible polynomial.

(¢c) fm+1=(v,ny) and v ¢ N, then v ¢ A1 U Bp,y1 and

is reducible (i.e. splitting) if b0

-1 v _
(Trm+1,m(cm))red -
is irreducible otherwise

Indeed, first note that

] = 2] = e

n

We have that

7Tm+1 vy = V(zgo), o ,x(lm—l) zéo)’ o ’x(2V2—1)7Z(0)7 B .’Z([m/n])vF(mH)),
and, by Lemma 4.5
FORD = 50D mod (20,2, 2, ala D L0 i)
where
F("”H) = —xgul)ax(”)b U

where U is a unit in R,,. Therefore, whenever b # 0, (7, ,.(C))

red
C’,’;i,_(ll 0y C’”HO ) and to have a splitting of first type we need to

argue that v+ (1 0), v+(0,1) € Fy, 11, and the splitting is of the form
two vertices projecting to one vertex.

(i) f v € F,,, N B, then

m?

irreducible  if y = (%7 5

n

(Trm-‘,-l m(czz))red =
reducible otherwise

Indeed, if v = (l, %), then

cr)= (xgo), e 7x§l/1) méo), . ,xé”rl), z(o), o 2= F(m), F(mﬂ))

m+1 m

and by Lemma 4.7 we have that 7Tm+1 m(Ch) = Cl oy, with v € By, 4
By Lemma 4.10 7rm+1 m(Cr

v ) is irreducible.
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Suppose then that v # (£,1),ie. a > 1. Then, from Lemma 4.7 we
deduce

Cha WO ith=0,1
(W;L}l-l,m(c’rl;))red =

cr Ukt et O ey >

Hence if b = 0,1 we have two vertices projecting to one vertex, while if
b > 1 we have three vertices projecting to one vertex.

(iii) If v € F,, "B, then w1, (CY

m+1m m
To finish, notice that if v = (£, 1) and n divides a then F,, C Z x {0} and for

every v € F,,, NA,, we have v € N, therefore we never have the situation described
in (c).

) = Cr, | irreducible.

O

Remark 4.20. The splittings of second type at level m + 1 correspond to the fol-
lowing situation, there is a component CY, with v € B, such that W;il’m(C;’l) is
reducible. Then, by definition, C}, is a singular algebraic variety, and the decom-
position of ﬂ-;@}i-l,m(c;;l) in irreducible components has one component (precisely
Cy..1) projecting to the reqular locus of Cy,, while the rest of the components (one
or two, depending on the singular locus of C},) project to the singular locus of CY,.

In this situation we say that C}, splits at level m + 1 through the singular locus.

Theorem 4.21. The graph I' describing the structure of jet schemes through the
singular locus of a q.0. surface singularity with one normalized characteristic ex-
ponent A, determines and it is determined by \.

Proof. Recall that A = 7. By Lemma 4.19, looking at the splittings in I', we
are able to distinguish the four cases:

(i) v=(2,0) or v = (%,1) with a =0 mod n

n’ n’n

2.
~—
=2

I
3le
3o
~—

=

=
=

S
Y

S

\%

=

Now we recover v on each case. We will see how, roughly speaking, the split-
tings of the first type give information about a and b, while the splittings of the
second type give information about n. Recall that with the data of the codimension
and the embedding dimension we can deduce if a vertex V,,(c, e) corresponds to a
component C), with v € A, or with v € B,,.
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Case v = (2,0) or v = (2,1) with a = 0 mod n. At level m = 1 we

n’n

have only one vertex. Looking at its codimension as m grows, we know
that at level m = n the codimension grows for the first time. If this vertex
corresponds to a component C}, with v € B,,, then it must be a = n and

then
1
Y= (15 7)
n

Otherwise, we have recovered the multiplicity n and we know that a > n.

If v = (2,0) with ged(a,n) = 1, for v = (n,0) € N and level (v,ny) =
an we have v € Fy,, with

cr —V(xgo),. S Z(O),...,z(afl),F(a"))

an e 5

Then at level an + 1 we have the first splitting, and it splits as

red

(n,0) (n+1,0)
an+1 U CanJrl

We can read the number an from the graph, and since we know n, we
recover a t0o.

If v = (%,1) with a = 0 mod n, we have, for v = (1,0) € N and level
(v,ny) = a, that v € F,, with

CY = V(acgo),z(o)7 .. .,z“”’”)_l),F(“))

a

At level a + 1 we have the first splitting, as follows

( a+1 a(OV))Ted = (V<x50)? Z(O)> s az(<V77>_1)7 F(a)a F((H_l)))red C(Ei-(l)) U C((j—?

and we can read the number a.

Note that in both cases the first splitting is of second type. How do we
distinguish these two cases? We have at level m = 1 only one component
and of codimension 2. In the second case we have at level m = a — 1
only one component, of codimension (v,y) +1 = 2 + 1 > 2. Hence we
must have jumps in codimension, but all are level m = 0 mod n, more
precisely, at level m = n when passing from the component V(xgo), Z(O))

to V(x(lo),z(o),z(l)), at level m = 2n when passing to the component

V(a:go),z(o),z(l),z@)), and so on. However, in the case v = (Z,O) we
have at level an — 1 the component C’én 1 of codimension n 4 a > 2, and
there must jumps in codimension at certain levels m # 0 mod n, more
precisely, when passing from C’ (10) 44 C’nf f} and so on. Here it is crucial

that ged(a,n) = 1.

Case v = (n, n) See Remark 4.16, the number of irreducible components
stabilizes at value n — 1 at level m = n — 1. Then we read easily n from
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(iii)

(iv)
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the graph.

Case v = (%, %) with a Z 0 mod n. Let us look at the first part of the
graph, before there is a splitting. Let mg be the level at which we find the
first splitting. By Lemma 4.19 the splitting can be of first or second type.
We recover a as follows. We claim that the splitting is of first type and at

level mp = a. Indeed, notice that (1,0) ¢ N, since a # 0 mod n. Then
COD — V(20 .. 55)

and

kb (cM0) = V(xgo), PLII () F(@)

a,a—1 a—1

where, by Lemma, 4.5,
a —1 a—
FO = a0 (1= 3 cojoat”” ) mod (af”, 20, 2(57D)

-1
And since 1 -5 cajoxéo)]

there is a splitting
rd L (C09) = 029 U e

a,a—1

is a unit in (C{xéo)}, we deduce that at level a

of first type.

We still have to find the value of n from the graph. Notice that, since
Xsing = {1 = z = 0} irreducible, and since a > n, we have that

(anl(XSing))TEd = V(x(lo),z(o)) for 1 < m < n, and (ng(Xsmg))red =

V(.rgo), 20, z(l)). Therefore the number n is the first time in the graph
where the codimension grows.

Case v = (%,%) with a > b > 1.

It is clear that a = b if and only if the graph is symmetric. Suppose we
have a = b, then ged(a,n) = 1, and, as in the previous cases, the first time
we have a jump in codimension without splittings, is necessarily at level n.

While the first splitting is at level a = b.

Suppose now that a > b. First we recover the multiplicity n. At level
m = n it is the first time in the graph that we have a jump in codimension
in all components at this level (there might be more than two components
if a < n). Indeed, at level m = n there must be a jump in every component
since z(V" appears in F(™) . Of course, there might be jumps in codimen-
sion in previous components, but since b # a, there may not be in every
component.

Now we will distinguish in which component the graph projects to
{x = z = 0} and which to {y = z = 0} (recall that in this case the
singular locus of X is reducible and has two components, therefore the

graph has two components, one describing the lifting of V(x(lo), 2() and
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the other describing the lifting of V(xéo),z(o))). Again, it is crucial that
b < a. At level m = 1 we have in both components one vertex and with
codimension 2. The first time that this situation changes (meaning, at least
one component either splitts or its codimension jumps), must occur in the

branch projecting to {20 = 2{”) = 0} and at level m = b (if the splitting
is of first type, or if there is a jump in codimension) or at level m +1 =b
(if the splitting is of second type).

Looking at the other component of the branch, we recover analogously,

the number a.

O

We end this section with a couple of examples illustrating the previous result.
We will draw an arrow in the graph at level my, when a component associated
with certain v, gives rise to a component for every m > my, i.e., v € F,, for every

m > my.

Example 4.22. Consider the graph ' drawn in Figure 2, representing the structure
of m-jet schemes through the singular locus of a q.o. singularity. Recall that the
vertices are weighted with e the embedded dimension and c the codimension.

m =17
=16
=15

m =14

m =13

m =12

m =11

m =10

m =

m=2_8

m=7
m==06
m=2>5
m=4
m=3

m =2

m=1

Splitting of second type

(30,9)
(28,8)
(26,7) Splitting of first type

(24, 6)

(22,5)

(19, 5)

(16,5) (17,5)

(14, 4) (14,4) Splitting of first type

(12,3)
(9,3)
(7,2)
(4,2)

F1GURE 2. The graph of the irreducible components of jets
through the singular locus of a q.o. surface singularity.
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Since there are splittings of both types, but it never happens that one component
splits into three components, we deduce that v = (%,%) with a > n. The first
splitting is of first type at level m = 5, hence a = 5. To compute n it is enough to
find the first time we have a jump in the codimension. Therefore we have

=G4

Example 4.23. In Figure 3 the graph associated with the jet schemes of a q.o.
singularity is drawn. Since the graph is more complicated than the one in the
previous example, we will only decorate it with the codimension, but instead we
will say the type of splitting whenever there is one (recall that for this we use
the embedding dimension). Let us recover the data of the characteristic exponent.
There are splittings of second type where three vertices at level m project into one

m =19 7 7 11 14 Two splittings of second type
m =18 6 10 13

m =17 5 9 12

m =16 5 8 12

m =15 5 8 11

m =14 ) 7 11

m =13 5 7 10 Splitting of second type
m =12 5 6 9

m =11 4 5 8

m =10 4 4 8

m=9 4 4 7 Splitting of first type
m =38 3 7

m=71 3 6 Splitting of second type
m =26 3 5

m=>5 2 4

m =4 2 4

m=3 2 3

m=2 2 3

m=1 2 2

F1GURE 3. The graph of the irreducible components of jets
through the singular locus of a q.o. surface singularity, decorated
only with the codimension.
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vertex at level m — 1 (we can see one at level 19 in Figure 3). Therefore the
characteristic exponent is of the form v = (%, %) with a > b > 1. Since the graph
is obviously asymmetric, we deduce that a > b.

The multiplicity is n = 6 because at level 6 we can see the first jump in codi-
mension in all components. Since the first jump in codimension is at level m = 2
and only in one of the components of the graph, we deduce that b = 2, because
b < a. Now, we recover a looking at the first splitting in the other component of the
graph, it occurs at level m = 9 and it is a splitting of first type, therefore a =9, and
the graph represented in Figure 8 describes the structure of irreducible components
through the singular locus of a q.0. surface with characteristic exponent

(33)

T=\66/)

5. JET SCHEMES OF QUASI-ORDINARY SURFACE SINGULARITIES: THE GENERAL
CASE

We generalize the results of the previous section to the case of any number of
characteristic exponents. Let X be a q.o. surface defined by a polynomial f with
g characteristic exponents. We describe the decomposition of (77;11 (X Smg)) n
irreducible components as

(77;11 (XSing))red = Uver,, Cy,

analogously as for the case of one characteristic exponent. First we will define the
candidates C,, we prove its irreducibility and finally study the inclusions among

them, to define the set F,.

red 1

Let us look first at some examples.

Example 5.1. Consider the q.o. surface X defined by f = (2% — 23)% — 21023,

The generators of the semigroup are y1 = (3,0) and 72 = (%, %), and the singular
locus is Xging = {x1 =2 =0} U{z2 = 22 — 2} = 0}. Let us look at the component

2

Zy = {x9 = 2% — 23 = 0} of the singular locus. If we lift Zy to level m we have

3
71 Z,) = V(zgo), 207 _ x(lo) JFM 7F(m))

m

3, : 10 (g4 3
since F(0) = (2(0)2 — xgo) )3 — :L‘(lo) méo) =0 mod (91:%0),2(0)2 — :L‘(lo) ). This last

congruence is easier to handle if we use the first approzimated root fi = 2% — 3.

It is clear that we can write
3 10 4
FO = Fl(o) — 1:50) ZCéO) =0 mod (:Céo),Fl(O)).
What it is not that clear is that

2 9 4 10 3
FO = 3F1(O) Fl(l) — 10x§0) mgl)xéo) —41‘&0) xéo) xél).



42 H. COBO AND H. MOURTADA

In the example above we are, roughly speaking, considering f; as a variable in
the expansion of f:
f=h® ot

Let us formalize this idea. Consider the following embedding of A% in A3%9 with

coordinates (x,uo, ..., uq). The embedding is defined in terms of the semi-roots as
follows. Let us denote, for 0 < j < g — 1 (see Lemma 3.11),
G pUED D .
hj = —uj 4 anj+1 _ Cj+1Xa(]+ )UOIJ o Ujil + Z J+1) a r1 . uj1+1
We can embed A® in A3*9 as V(hg,...,hy—1), and, if we set h, = ug,, then (see
[17]) the embedding of X in A3"9 is defined by
V(ho, ..., hg)

We abuse of notation and denote by X the embedding of our q.o. surface in A3+9.
Note that we are not dealing with a hypersurface anymore. The jet scheme X, is
now defined by

B C{xgo)7 ;z:éo)}[xl(.l), e ,xE ™) ug]), e ,uém), u(go), e ,ugm)]izlg
Xom = Spec M) ) 17(0) (m) (0) (m)
0 7"'7HO ’Hl ,---7H1 ;Hg 7"'aH9 )

(H

We denote, for 0 < j < g—1, ¢j41 € C{z1,x2}[uo, ..., u;| such that

PR

hj = —uj +qj+1(1'1,$2,uoa cee ,Uj)

holds. Then (recall notations in Section 2, where we used capital letters for poly-
nomials, but not for variables) we have that, for 0 < j < gand [ >0

@ _ O
H = i), + QL
Consider the ring
1 0) (0 1) e l ! 0 !
R;):(C{:Eg),xé)}[:vg x@,xé%.. xé),ué),.. ué),...7u§)7...,u§)]

for 0 < j < gandl > 0. We can identify RO with R (see Section 2). Since

the elements Qy) belong to the ring Rg-l), it makes sense to define the following
evaluation map defined by giving suitable values to the variables:

ev; 1 C{z1,za}tug,...,u;] — Clz1,z2}[7]
x; —  x;, fori=1,2
U; — fi, fori=0,...,j

(recall that fo = z), and at the level of jets:
evj(«m) : R;m) — R(m™

a:l(-l) — (l) fori=1,2and 0<I<m

’L )

U, — Fi(l), fori=0,....,5and 0 <[ <m
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We have then the following result.
Lemma 5.2. For0<j<gand0<[I<m
@ _ . (m)~ 1)
B = ev™(Q57).

This permits to describe the equations of the jets using derivations and con-
sidering the approximated roots as variables, as illustrated in Example 5.1.

Remark 5.3. As Corollary 2.2 shows the linearity of equations
Fi(l) (cho), . ,zgl), P r(l), z(o), ce z(l))

2 sy Ty

n mgl), mé) and 2, by Lemma 5.2 we deduce the linearity of

F( )(xgo),.. :C:(Ll),xé ),...,xél),z(o),...7z(l),F1(O),...,F1(l),...7Fi(3)1,...,F,(l)1)

i—

mn xg )7 xél), 20 Fl( ), ey Fi(i)l, meaning that they appear in Fi(l) with exponent one.

Example 5.4. We continue with Example 5.1. If we lift the component of the
singular locus

Zy ={xa = f1 =0}
at level 3, we have that

w3 (Za) = 73 (V@ F?)) = v (@, B, PO, ) FO)),
3
where Fl(o) = 0% xﬁo) . We can easily check that
02,01 091 04 MORNORNG
=0 mod (a:go),Fl(O))

2 2
F@ =" p® L pO M
=0 mod (a:go),Fl(O))
3
FO = B mod (o, E),

and then (ﬂgl(Zg))md
Indeed, it decomposes as

(751 (22)),0y = mas(Sing(V (2§, FV)) Uy 3 (Reg(V (2, F*)))

= V(:céo),Fl(O),Fl(l)). Notice that it is not irreducible.

V( (0) O))UV( .(0) F(O) F(l)) {x(10) #0}

But, since V(:UEO),Z(O)) is an irreducible component projecting to Z1 = {z = x1 =
0} and we have that V(xgo), (0 ) 0)) - V( (0),2(0)), we deduce that is not an

irreducible component of (7r3 (XSmg))red.
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Let us denote by Cs the component V(xgo),Fl(O),Fl(l)) N {9:50) # 0}, and set
Cy = (7r4_7§ (03))red' We have that Cy is irreducible, because

Cy=V (@, FO FY F@) n {2\ £ 0},
with 1 .
F& = —:Ugl) xél) mod (Jcéo),Fl(O),Fl(l))

and hence Cy = V(a:g]),xél)7 Y, Fl(l)) N {2\?) % 0}. With the same arguments it
is not difficult to see that if we lift to level 12, we have

012 = (7T1721,3(C3))7>ed = V(xéO)7mél)7x52)a F1(0)7 F1(1)7 F1(2)7 F1(3)7 F(12)) N {ng) 7é 0}

where

3 10 (gy4 .
FO2) = F1(4) —wgo) xé‘s) mod (cho)mcgl) acéZ),F1(0)7F1(1),F1(2),F1(3))

)

- . , @3 @10 @3t . . ) ) )
Then Cz is irreducible, since Fy 7 —x7 ' x5  is irreducible, but if we lift to next

level, we have that

_ 0 (1) (2 0 1 2 3 0
(ﬂ-131712(012))red = V(.’Eé )71'é )wxé )aFl( )7F1( )aFl( )7F1( )7F(12)7F(13)) n {ﬂfg_ ) # O}u
which is not irreducible, since it splits through the singular locus of the variety
V(@ 20,2, FO, FD FD FO | FO2) Then (n5315(C1a)) ., = Crs U Cla,
where

Cis V@D 2P FO, e 2 o)

red

Cly =V(ey 2D, e FO . FP P02 FO9) 0 {2 £ 0} {28 £ 0}

To formalize all the ideas illustrated in the examples we need to introduce
some notation.

Definition 5.5. For v € 0 N Ny and m € Zx>o we define the ideal
J¥ = Rad (x§°>, T I O ROl AN ,F<m>) .
For convenience we set
JY = (:EEO), . ,x(lul_l),xéo), .. ,1(2”2_1))
Moreover we define the integer j(m,v) € {0, ..., g}, defined by the inequalities
(vej—17;) <m < (v, e;vj41)s
and the integer j'(m,v) € {—1,0,...,j(m,v)} defined by
(v,ej-175) + € <m < (v,e;vj41) + €541,
where we have to set
v-1:=(0,0), e.1:=0, e_5:=0

Recall that we convey vg41 = 00.
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We denote by D(h) the open set
D(h) = Spec Ry,

where R is the ring R = (C{a:§°),x§0)}[x§”, J;gj), 20 20)];20. Recall that, for 1 >0
we denote by RV the subring R = C{xgo),xgo)}[xgj),acgj),2(0),z(<7)]()<j§l.

We need to introduce the artificial notation of v_1, e_; and e_5 to be able to
define j'(m,v) = —1, which will cover the range 0 < m < n for any v. Now, for
any v and m, the integers j(m,v) and j'(m,v) are defined.

With the definition of the integer j'(m, ) we can write in a compact form, the
relation <,, given in Definition 4.12, for the case of one characteristic exponent, as
v < V' if and only if V' — v € Opeg j(mp)>

because if g = 1, we have that:

e v € A, UB; is equivalent to j'(m,v) <0
e v € B is equivalent to j'(m,v) =1

We are going to prove that this is the relation that controls the inclusions

among the candidates C}, to be irreducible components also in the general case,

but the proof is much more involved. First we have to define the candidates to be
the irreducible components.

Definition 5.6. For m € Zso and v € 0ging N[0, m)? N Ny we set (recall Remark
2.5)

V(J;l) Zf OReg,j'(m,v) — P1 U p2
DY = V(J;;L) n D(Igul)) Zf gReg,j’(’m,l/) = p2

V(I5) N D@E) N D) if onegjitma = {(0,0))
where j' = j'(m,v). Moreover we define C%, = DY, its Zariski closure.

Note that Dy, is reduced since the ideals J;” are radical.

With these sets C¥, we can cover (ngl(Xsmg))Ted. Indeed, given a jet v € Xy,
if z;09 # 0 for i = 1,2, the vector v = (ord(z1 o), ord;(z207)) belongs to o NNy
and 0 < v; < m. Moreover it is clear that v € DY C C¥,, and we deduce

X, = U o,
veoN[0,m]2NNo
where [0, m] denotes the closed interval, and [0,m]? the square [0,m] x [0, m]. We

are interested in m-jets with origin at the singular locus, and this introduces some
constraints in the possible values of v.
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Lemma 5.7. Form € Z-q we have that (anl(XSing)),.ed = UVGUSingﬁ[O,Wl]QﬂNO Ccr,.

Proof. Given v(t) € (Tr,’nl(Xsmg))red, suppose first that x; o v(t) # 0 for
i = 1,2. Then we define v := (ord(z1 o ¥(t)), ord¢(z2 0 (t))) € [0, m]* N Ny and
obviously v(¢) € Dy, C C¥,. We have to prove that v € 05, N Ng, and this follows
easily from Definition 3.17, by distinguishing cases.

Now we deal with the other cases. If x; oy(t) = 0 for « = 1,2, then ~(t) € C},
for any v € 0ging N No with 0 <v; <m fori=1,2.

If 1 079(t) = 0 and 25 07y(t) # 0, then we denote « := ord¢(z2 0y(t)). We have
0 < a<m,and y(t) € C}, for any v € oging N Ny, with 0 < v; < m for i = 1,2,
and 9 < a.

The left case x1 o y(t) # 0 and x5 o y(t) = 0 is analogous to the last one.

We prove the other inclusion. If v(t) € X, \ 7.} (Xsing), then ¥(0) & Xging-
Again distinguishing cases depending on the singular locus, we can prove that
V= (ordt(xl o y(t)),ordt(zg o 'Y(t))) ¢ 08Sing- O

The examples at the beginning of this section together with the discussion in
Section 4 for the case of one characteristic exponent, illustrate that the main point
is to study carefully the equations defining the m-jets. More concretely, we have
to study

F(l) HlOd le—l

for v € oging N [0,m]?> N Ny and [ > 0.

We have seen in the examples how the semi-roots f; appear in the sequence
FO .. F™ modulo the ideal J¥ _,. By definition

Fi(l) e RO = (C{gcgo)7 xéo)}[ac,(cl), . 71‘§€l)7 20 z(l)]kzlyg.

)

However, by Lemma 3.11 and Lemma 5.2, we can see Fi(l as an element in

C{z”, e D, a1 o [FO, L FD o< as.

Definition 5.8. For v € oging N No and | € Z>q, we define FO(IZ = Fél), and, for

)

1 <i < g we define, by recurrence, R(lu) as the polynomial Fi(l once we set

JI](CO) == m,(:’“fl) =0, k=1,2,

Fri) _ g Jor0<j <iand0<r; < (V,vj41).

J,v

By definition we have

(14) rY = Fl

7 1,

ZV) mod (Jﬁl,Fj(g))

0<j <, 0<r; <(v,vj+1)
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Let us study carefully the polynomials F; M since they are the interesting

2,V

equations in JY, the defining equations of the sets C¥,. The next result is the
generalization of Lemma 4.5 to the case of g > 1 characteristic exponents.
Lemma 5.9. For any v € 0ging N No and 1 < i < g, we have that

FZ(ZV) =0 for 0 <1< {v,n;y).
Forl > (v,n;v;), the polynomial F, (l) is mon-zero and quasi-homogeneous of degree
1. More precisely, for | = (v,n;vy;) we have the following description ofF Vn”l».

(i) Ifv €a, then, for 1 <i < i(v), the polynomial F(<V i)

n; (i) ald ¢ . 7'51)
Fz(_<V1’7'YV1>) — e xgm) xéw) 2 F(f: 1)) 1 o Fi(i’;,:l/:—ﬁ) 17 ZfZ < Z(V)
i) a( i(v)) ( (v)) e 1( l(/V))
—Ci(y)xg v1)®1 ngz) F((Um}) ._Fi((i)r_nz(fu)q)) DT — i)

(il) If v € p1 U pa, the description of Féi”’nmn is more complicated. We have,
for 1 <i<i(v),

U™ _ o o 0w pean™ | plae )5 g,

i—1,v V] o,v i—2,v

(i(»)) (i(v)) ( ) (i (v))
v) 1 v2) %2 ) (v viy—1) i) =1 (vsmi) Vi)
7Ci(V)Ig v ( ? Féfl/ v F’L(l/) 2(11 + Gi(u),u( e

where, for 1 <i < i(v),

I o O UL (o

O,v i—1,v ’

Ca,r are the coefficients appearing in the expansion of f; given in Lemma
3.11, such that

(v, (a1, ) + 71171 + -+ 1575) = (U, nivi)s
while when i = i(v),

(vmiw)¥ien)) _ )% (1) L ((r,y1)) " ((vvi(y—1)) i) =1
o () Yi(v) Z szg 1) éz) F(fy 71)) "'Fi(y)_z(,; ,
r=(r1,.,Ti(v)—1,0)

subject to the same conditions as before. Moreover, in this case the poly-

nomial F((%nl(”m(”m can be written as

(i(v)) (i(v)) (v) (i(v))
vy Vi) (v1)* ( 2) 42 (( v,y 1>)T1 ((vyiy—1) i) -1
Fz(u) V( )Yiw))) = —Ci() T} F, "'Fl-(,,),g(,,i .U

where U is a unit in R, .
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For i > i(v) we can sometimes describe some polynomials F}»S””””W

There exists an integer r(v) > 0 (which is always 0 when v 63) such that
Vi) M) +r @) Yiw)) = W M) +r0) Vi) +r()) < Vs Vi) +r()+1)

and then, for i(v) < i <i(v)+r(v) the polynomial Fi(’iy’"m» has the form
described above for i < i(v).

Before proving the Lemma we illustrate the content in the next example.

Example 5.10. Let us consider the g.o. polynomial f = ((z — x39)3 — x{x%)Q —

21527 with characteristic exponents

) o (T, o (131
! ( ’2)’ 7 (3’ ) ” (2’2)

Then ny = 2, ng = 3 and n3 = 2. For v = (0,1), we have that i(v) = 1, since
v ¢ Ni. Moreover r(v) = 1, because

3= (v,mnam) = (v,n2y2) < (v,73) = =

We have that
Flrmm) — ph) O

3 7 3
F{lm) - B _ p0° 07,0

and the polynomial FQ(SV) can be wrilten as

6
R = 051 )

with 1+ xgo) a unit in (C{:L'(lo)}, as the Lemma above claims.

Notice that, despite the fact that v € p1 U pa, we have Gﬂ = G(S) = 0. This
is due to the fact that the q.o. polynomial [ is very simple, it is enough to consider
the following polynomial with the same characteristic exponents

h = ((z* — 2iza + 5afas)® — alzh + 2x1z22) — 2Pz

to have non-zero polynomials Gw

Proof of Lemma 5.9. For 1 < i < i(v) we will use the expansion of the semi-

)

root f; given in Lemma 3.11. Notice that by definition, Fi( consists of monomials

of the form

a1) (ani)
Fi(fll o Fi

c s(0) 50 (i—1) sgi_fl)
l'gbl)...xgbo‘l)xgcl)...xg‘)‘Z)FO( 1 )FO( '1) F( ) . F( i )

i—1
with 0 <a; <---<a, <landa; +---+ap, =1, w1th0<b1 <o <by, <,

0< s <. <5£J)+1 <land with by 4+ -+ ba, + 1+ + Cay + 57 + - +
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sf-?) +- sﬁi’” +- s%il) = [. Setting :C](Cl) =0 and FJ(Z’) = 0, as in Definition
5.8, amounts to impose the conditions

k
s > (v, 911)
Then, the first type of monomials have order
l= ap +--- +a/ni Z ’I’L7;<V,’)/i>

while the second type of monomials have order

l :bl+"’+ba1+"'+"'+$(1i_1)+"'+5£~i_1)

> iy + agve + (v, y) + o (v, v)

> (v, nivi)

Hence we are left with the monomials of order > (v, n;;). Therefore Fi(’ly) =0 for
0 <1< (v,n;v;) as claimed.

The expression of Fi(’g,y’niw) for i < i(v) follows since these are the monomials
of order exactly (v,n;v;). For i = i(v) we have to notice that (v,n;.,)%iw)) € Z

but (v,7;)) ¢ Z, and since in FZ.((%’Z"'(")W”)» we have to set Fi((?)q,u = 0 for

0 <7 < (¥,%(v)), the term f]"*; does not contribute at level (v,n;(,)7i(.)), because
i) [ (U Yy | > (Vi) Yi(w)) (where [2] denotes the smallest integer bigger or
equal than z).

The special form of the polynomial Fl.((<:)’7j("m(”)>) as a monomial times a unit,

is proved with the same kind of arguments. Notice that the formula for C?:’,Efl',)’"”’"> )

still holds for ¢ = i(v), and it is straightforward to prove that for any term appearing

in G((M”i,(y)%(u)))
i(v),v

is completely analogous), then again with the same kind of arguments as before,

and using the condition

we must have r;,y = 0. Suppose now that v € p; (the case v € py

(v, (1, ) + 171 + - + Ty —1%iw)—-1) = Vs i) Vi)

we can prove that

o > Oégl(u))

r; = rj(-i(y)), for 1<j<i(v)—1

and the result follows.
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Finally, we have to prove the claim for Fi((:/)":;(;Hm(”)“)) fori(v) <l <i(v)+

r(v) when v € p; U py and r(v) > 0. Notice that the condition defining r(v) is
equivalent to the set of r(v) + 1 conditions

<V7 nz(l/)’-)/z(z/)> = <V7 ’Yi(u)+1>

(v, ni(u)+1%(y)+1> = (v, %:(u)+2>

<V7 ni(l/)-l-r(u)—17i(u)+r(l/)—1> = <l/a 7i(u)+r(u)>

<V7 ni(u)+r(u)7i(v)+r(u)> < <Va 'Yi(u)+r(1/)+1>

and therefore (v,7;()41) € Zxo for 1 <1 < r(v), even though v ¢ N;(,)4;. And
the proof goes as in the case i < i(v). O

Corollary 5.11. In the same spirit of Remark 5.3 we have that, for r > 0 and
1<i<yg, Fi(yi,y’anT) is linear in

x§V1+T)7 xélfz-i-r), Z((Vm)“)’ F1(<”’72>+T), o ,F(<';’1">+T)

Proposition 5.12. Given v € oging N No, for 0 <1 < (v,€i)-1%i(v)), we have
that,

(ﬁ €j(l,v) ‘
FO = Fj(lfiljv; mod Jy 1 if 1 =0 mod ejq.)
0 mod J} |  otherwise

Before proving this result we deduce an interesting consequence, where we give
a smaller set of generators of the ideal J},.

Corollary 5.13. Given m € Zsq and v € 0ging N [0,m]*> N Ny such that m <
(V, €i()=17i(v)) we have that
N — (le,F-“V’"WH”)

m i )ogigj(mw) 7
for 0 < ri < (Vi1 —nyi) if 0 < i < j(m,v), and for i = j(m,v) and 0 <
[Ny

€j(m,v)

Tj(m,v) <

Proof. By Proposition 5.12 we have that Fi(’f,”’"”"H”) € TV (tmimy 1y SiCE,
by definition, J} ; C J/, it is enough to notice that for 0 < ¢ < j(m,v) and 0 <
[m7<yvej(m,,v)717j(m,u)>}

i < (V,%it1 — niyi), and for i = j(m,v) and 0 < Tj(mw) < €j(m,v)
we have that e;({v, n;v;) + ;) < m. O
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If we consider the analogous definition of J}, and DY, for each of the approx-
imated roots f; (which are q.o. themselves) and the corresponding surfaces X (@)
(see Definition 3.4), then we can define the sets DY, , and we have the following
result, which is a consequence of Proposition 5.12 and can be seen as its geometric

counterpart.

Proposition 5.14. For m € Zsq and v € oging N [0,m]> N Ny such that m <
(Vs €i(w)=17i(v)), we have that

v a -1 v
Dy, = (Wm,[%]) (Dj,[g])

where j = j(m,v), for ¢ > p, 7§, : Ag — Af; is the projection on the jet schemes
of the affine ambient space.

Proof. Tt follows by Proposition 5.12 and the fact that if j(m,r) = j then
(v,n;v;) < 2—’; <AV, yj41)- O

Hence, for m € Zs and v € oging N [0,m]?> N Ny with m < (v, Ci(w)—1Yi(v))>
if j(m,v) = j, the geometry of C¥, is determined by the geometry of the j-th
semi-root.

Proof of Proposition 5.12. Note that we have j(l,v) < i(v), and then
(v,nivi) € Z for 1 <i < j(l,v).

e We start by dealing with the case v ¢ p; U pa, which is the easiest. In this
case we have forany 0 <i < g

(v, nivi) < v, vitr)-
We proceed by induction on . For [ = 0 we have
n i j k
FO = Féo) + Z dijkﬂfgo) xéo)]FéO)
(4,9)+ky1>nm

since f = 2" + Z(i,j)+1w1>n~/1 dijkxﬁxgzk. We have v1,v5 > 0, and in the previous
expansion of f we have that (i,7) # (0,0), since k¥ < n. Therefore we deduce that

FO = Fo(f)u)n mod J¥ ;.
Recall that Fo(ll), = F"” and that J*, = (xgo), T i N ,xg”“‘*“). As a
consequence Féo) € Jy C JY for any ¢ > 0, and therefore for any v(t) € DY with
1> 0, ordy (fo o ”y(t)) > 0.

Suppose that the claim is true for F(©,... F®_ Then, by induction hypoth-
esis, for any i > [ we have

Fs(ff’nws», . ,Fs(,(,ﬁ”%“)_l) eJV, for0<s<j

Fj{yily’njVj))’ F(<V’nj"/j>+7“) c Jv

R R i
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with r = [(={eei=10) Vef 190 and j = j(I,v). By (14) the same holds for F\", and we
deduce that for any ~(t) € DY with i > [,

O]."dt fé ) = <V,'Ys+1>7 for 0 <s< j7
ordy (f; 0 Y(t)) > (v,nymy) + [Fe=2il] = [L]

where j = j(I,v). The last equality implies that Ordt(fj o W(t)) > l:—]l There are
two cases:

i) I jl+1v)=45v)=7,1e (rej_1v) <l <l+1<(v,e;vj+1). Then
l4+1=(v,ej_17;) + a with & > 0. We have two possibilities:
(a) If I + 1 = 0 mod ej, then we can write
I+1=(v,ej_17;) +re;
with 7 > 0. By Lemma 3.12

e; () /B(J) sj U) 1 B2 Sjt1
f:f] dwl J;z fO .. ] 1+Zdﬂsxl f ,

j
and then, for any y(t) € DY with i > 1+ 1 we have

ordy (ff] o y(t)) = ejord; (fj o V(t)) >1+1

ordy (dyatt o 13 f o) 2 (B9, BD) + 5P+ 5Py
= (v, 6m+1> >1+1
Suppose that there exists certain coeflicient dg s # 0 such that
Ordf(dﬁ le 52 o .,_f8]+1 o(t )) <141
Then
I+1 > {v,(B1,B2)) + siord; (fo o fy(t)) + .+ 55 0rd, (f7 o ’Y(t))

> (v, (B1, B2) + s171 + -+ + 5575) + sjpr0rde (f5 0 ¥(1))
> (v,e57j41) = Sj01 (Vi) + 854100de (£ 0 (1))

> (v,€%j+1) — Sj+1{v,v541) + Sg+1l+1

Then (v, (e; — sj+1)7v41) < ((+1)(1 — bgl) and, since s;11 < ej41 < ej,
we deduce

(v, e57541) <1 +1
which is a contradiction. Then we have proved that

F(H—l) F((” gy ) +r) ¢ mod Jl/

(b) If I + 1 # 0 mod e;, then we have
ord: (57 oy(t)) >1+1
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and arguing as before we deduce that

FUHY =0 mod Jl

If j(l + 171/) = j(l,V) +1= J+ 17 Le. <l/,€j_1’)/j> <l< <V76j7j+1> <

l+1< (v,ej417j42), then I +1 = (v,e;7;41), and j < g. Hence ord(f; o

v(t)) = (v,7j41) and I+ 1 = 0 mod e;11. By Lemma 3.11, fj41 = f"ﬂ+1 -
(J+1) (J+1) FU+D PU+D

cjryt xyt fol ---fjil + 2 s wy? fot - f7T". By induction

hypothesis

ordy (f;7" 0 (t)) Z nj1 TE = (v vin)

QUFD LGHDGHD) P+
ordt(cjasll z5®  fo! R PO O’Y(t)) > (Vs nj1Yj+1)

T1

If there were cq» # 0 such that ord, (z{' 25> fi* - - frﬁloy(t)) (V,mjt17vi41),
then

> (v, (a1, a2)) + riordy (fo 0q(t)) + -+ +rjprordi (f 0 (1))

> (v, (a1, a2) + 1171 + -+ +1575) + rj10rde (fj 0 (1))

> (v, n17j41) — i (Vi) + ripordg (5 0 (1))

2 (Vi1 Y1) — i1V 1) + i (Y1) = (Vi ngiays4)
which is a contradiction. Hence ords(fj11 0 7(t)) > (v,nj417j41). Now
consider the expansion

€11 ﬁ(ﬁrl) ﬁ(J‘Fl) §j+1) (JJr-*il) - sy

J J 3

j+1 djy1my" @p° fo f E dﬁ 5T T 2 o 'fj+1
given in Lemma 3.12. With the same argument as in the previous case we

€j+1

prove that FUFD = F;g:f““’j“» " mod J}.

e Now we consider the case v € p; U ps.

(i)

(i)

If v = (v1,0). Then we have

n j k
FO) = Féo) + Z dojkxgo)jFO(O) mod JY,
(0,5)+Eky1>2nv1

but since the condition (0,j) + ky1 > ny1 with k& < n is impossible, we
deduce

FO = Fo(o)n mod JY;

and the proof goes as in the case v ¢ p1Ups, with the difference that it might
be that j(l,v) = ¢ while j(I{ + 1,v) > i + 1. This is because even though
Yi+1 > nvi, if v = (v1,0), we may have the equality (v, n;7v:) = (v, Vit1)-

If v = (0, v2), then by definition (v, eq, —174,) = 0 < (v, €4,7g,+1), and

B s s
FO=FO, 3 dg 2 F) - FO, " mod JY,

g1,V g1,V
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with (v, eg,7g,41) < (v, (B1,0) + 5171+ + 89141791 4+1) = Sgi+1(, Vg 41),
and no matter whether sg, 1 is zero or not, since (v, v4,+1) # 0, we deduce

€g, < 84,41, which is impossible, since s4,41 < eg4,41. Hence FO) =
e
Fg(?,),, ' mod J¥ 1, and the first step of induction is proved. The rest of the
proof goes as the case v ¢ p1 U ps with the differences explained in the case
vV Epr.
O

By the congruence in (14) we deduce that for m € Zq, v € gingN[0,m]*N Ny
and 0 <i < j(m,v),
(15) ord (f; 0 (t)) > (v,nivs)
for any «(t) € D¥,. But we can be more precise, as the following result claims.

Lemma 5.15. Given m € Zso and v € 0ging N [0,m]?> N No, for any m-jet (1) €
DV

m?’

ordy (fi o(t)) = (v, 7ig1), for 0 <i < j(m,v)
ordy (fioy(t)) > 2, for j(m,v) <i<g

Proof. By (14) and Corollary 5.13 we have that for I € Z+¢
FY = F" mod Jz,.

Hence we will use the following equivalence, for any jet y(t) € DY, we have ord; ( fio
v(t)) < 1if and only if Fi(l) ¢ J¥ . or equivalently Fz(ly) ¢ Jv . Note that,

ord; (fioy(t)) = (v,vi41), for 0 <i<j(m,v).
Indeed, it follows by Corollary 5.13 if (v,v;41 — n;v;) > 0, and by (15) otherwise.
Now we prove by induction on i < j(m,v) that Fi(}g,”’%’“)) ¢ Jb

equality ord(f; o v(t)) = (v,7i41) follows. We can divide the part Gl(f;”"m» of
ELmoD) ag GLLma) = lema) (1) 4 ¢ (2), where

1,V 1,V i,V

G((u,m'ﬁ))(l) _ Z Cg,zmgyl)al.Z';DQ)QQFéf:”YO)H . F(<V”W71>)M—1

i,V 1—2,v

and hence the

with (v, (aq, ) +r1v + -+ ric1yi-1) = (¥, i), and
GllrmaD (9) = Zwagul)almgw)”Féwm»” o

with (v, (a1, a2) + 1171 + - - + 7)) = (¥, n7y;) and r; # 0. Then we can write
Fi(yl@m'm) _ (Fl((u»“/ﬁ)m + GE(VVW’%))(Q)) +

i—1,v

=2,V

NO! NO! () RO o
+ <—Ci$§”1) 1 x(2V2) 2 FO(’(VV»"/H) 1 .,.F((<V7’Y‘Lfl>)7nl 1 —|—G§<V’ 7%))(1))

where in the second part FUw)

i-1, = does not appear.
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First step of induction. We distinguish two cases.

e If min {1 < i < g | (v,nvi) < (V,7i41)} = 1, then, by Corollary 5.13,

F1(<1,V ) g Jy,, i.e., the first non—monomial equation among the generators of J7,

is F(<V ™)) Guppose that FO<V ") ¢ JY . then
0”@ | Slmnen)
—c1xyt xy + Gy (1) e Jy,

m
e o
If Ggfl”,’"”m(l) =0then —c;z{""" 2{"”™* € J¥  which is a contradiction, since
it can not be a defining equation of D¥,. Otherwise, v € p; U p2 and we have the
equation

( ll «
Cll’iyl) 1 (yg) 2 an (E(ul a1 (yg) 2 _ 0
where (a1, a2) > n1y1 and (v, (o1, az)) = (v, n1m).

(i) If v € p1, then the condition (v, (a1, a2)) = (v,n171) gives o = agl), and
hence the equation is

m2 +an0$2 =0

since a:(lul) # 0. But this equation is invertible in (C{xéo)} and it can not
be zero.

(il) If v € p2 the same argument holds.

WD
We have proved that —c; x(m bl +G(1fZ’"”1>)(1) ¢ J¥ and hence F&(ﬂwm)) ¢
Jv,. Therefore we have that ord,(fo o y(t)) = (v, 7).

o If min {1 < i < g | (v,ny) < (V,vi+1)} > 1, then we have that v €
p1 U p2. Denoting mo(v) = min {1 < i < g | {v,n;y;) < (V,7i+1)} we have that
F((’/(n)mo(u)’ymo(u)))

mo(V),

Moreover for 1 <1 < mg(v)

is the first non-monomial equation among the generators of J;,.

Fl(7§/l’m+1>) _ F((”ﬂlz’m)

8%

v,n v)Y v
and hence we can write FUmo ) Tmo )

mo() o as a function on z{"", 2{"*) and Féf;m)).

7

Suppose that Fo(fl'j ) ¢ Jv then we have an equation
G(xgyl),xéyz)) =0

where the monomials of G are of the form x%yl)alx;”)az with (v, (a1, a9)) =

<V7 nmo(u)’)/n(u)> = Nmo(v) " ’I’Ll<V7 ’W) for 1< < mo( )
If v = (11,0) € p1, then V1a1 = V1Mo (v) - --nyt" and hence o is fixed in all
monomials of G. Then, since xl 75 0, we can write the equation as an equation

in xé ), which is invertible in (C{gc2 } and hence not zero.

If v = (0,2) € po2 the proof is analogous.
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Suppose that ord;(f; o y(t)) = (v,7i41) for 0 < < j and we will prove it for
j < j(m,v). We distinguish two cases.

o If (v,vj12) > (V,nj417j+1), then by Corollary 5.13 we have ;YT]“WH» €

Suppose that F(<” ) ¢ JV . then

77L

(3+1) (3+1) G+ ‘ r§_1+1) .
_cj_"_lx(l’l)al (1’2)&2 FO(<;’YI>) 1 .. Fj(iul’::,ﬁ) J + G§+ ;+1"/]+1>)(1) c J;:Z

This is a contradiction if G§ ylnlj“%“))(l) = 0. Otherwise we have that v € p; Ups.

If v = (11,0) € p1, then

v,n; j v 0‘1 OO{2 v, 1 VYj T
(1) = ¥ o0 B gl
with

av+rf” 4 = ngani
(16)
(2) (2) (2)

ag +r1y ) o+ i, > j+17541

Recall that nj417vj41 = (045‘7+1), (J+1))+r( +1)7 +-- —|—1"(7+ )vj, where the integers
(agjﬂ), a§j+1)), r§j+1), e ,Tj(»j+ ) are unique by Lemma 3.6. Then we deduce from
(16) that

a1 = Ozgj+1)

7 :rl(jH) for1 <1<y

g > a(j+1)
QUHD LG SGHD SGHD
and we are done, since —¢j ) 20 Fé)(:wﬁ) o Fj(iyly) +
Gg&fﬁf“%“))(l) can be written as
QUHD LG LGHD LD
2@ ploan T " pao)

which is never zero, by induction hypothesis, and by the fact that P(0) = —c¢;j41
and since we consider germs of quasi-ordinary singularities P(a:éo)) is invertible in
0
c{z1,
If v = (0,v2) € ps the proof is completely analogous.

o If (v, vj12) = (V,nj417,+1), we are in the case v € p1Ups, and analogously as
we did with mg(v) in the first step of induction, we define the integer m; 2(v) =
min{j +2 < ¢ < g | (v,ny) = (¥,%i+1)}. Then, by Corollary 5.13 we have

{20V 20)) (1) .(v2)

e (V) € Jy,, and we can write it as a polynomial in z{ '/, 25",
Fo(fﬁ’“}), - 7Fj(,<l,yﬁj+1>)~ Suppose that F(<V ) ¢ JY.. Then the monomials in
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F j(ﬁ,y"y'“m) are of the form

I&Ul)alléyz)aﬂFQ(_’<DV7’Y]>)T1 .. F( Va’Yj>)

with the conditions
<V? (OélOLQ) + 7’171 + tee + ,rj,yj> = <V7 nmj+2(u)’7mj+2(u)>
= (Vs M5 (1) = 1M () Vg2 () 1)

= <V7 Njt1- nmj+2(l/)’7j+1>‘

If v = (11,0) € p1, we deduce that aq,r1, ... ,7; are fixed and oy varies. Hence we
have that

xgl/l)alxé@)azFO(fVVv’)’l))rl . F](<_V£7,/J>)TJP($;O)) =0
is one defining equation of D}, and this is a contradiction.

The case v € p, is analogous.

Now we prove the second part of the statement of the Lemma.

By Corollary 5.13, for any v(t) € D%, ord; (fj(m.) 0 7(t)) > par—
the claim for j(m,v) + 1 consider the expansion, denoting j(m, v) by ,j to simplify
notation,

m

. To prove

G+ G+ (G+1) G+1)
_ Myt . o o Ty T Qy .0 Tl Tit+1
fivi =177 —c¢imzt x® [y R R E Ca T 25 [ o f;

with nj417j41 = (a§j+1)7aéj+1)) + T§j+1)% 4t r§j+1)7j < (ar,a2) + 1y +
<+ +1jt17j+1. Then,

ord, (£ 05(t) >

G+ G+ G+ P+ i1 i1 . i1
ord (a1 apt S Sl o) = (el ad ) 4 L )
= (v, nj117541)
m
€jt1
Suppose that there exists cq,, 7 0 such that ord; (cq 27" 252 fg* -~ f;77 07(t)) <
——, then
j+1
2 2 (v (ansa2) Hriy+ )+ rorde (f 0 (1)

m

>
> (U, (Njg1 — rjg1)Yj41) + rjprorde (fj 0 v(1))
> (v, (1 — i) %41) + i1

i1 .
Therefore (v, (nj11 — 7j+1)v+1) < (1 — ﬁ)ej%, and since 711 < njp1, we

deduce that (v,v;41) < emj, which contradicts the definition of j(m,v). Then we
have proved that

m
ord, (fj+1 o v(t)) >
€j+1

Recursively we prove the rest of the inequalities for j(m,v) +1 < k < g. 0
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Corollary 5.16. For m € Zsg and v € 0ging N [0,m]? N Ny, such that m <
(v, €i,)=1Yi(v))» we have the following. If 1 < j(m,v) < g1, then we have

j(m,v)—1
VEL ™ M higima weain-nag»o N D) € () DES™),
i=0
while if g1 < j(m,v) < g we have
j(m,v)—1
VEL ™) cicitma) s —niny >0 D DS ¢ () D(EL7 ),
i=0

Example 5.17. Let X be a quasi-ordinary surface defined by f = ((22 — x1x2)2 -

28232)% — aBxit2.  The generators of the semigroup T are v, = (%7 1), 72 =
(%,%) and 3 = (4—(?,5). Notice that v = (0,3) ¢ N, and (v,e172) = (V,ea73) =

45. At level m = 45 we have the set
DA(L%?)) _ V(.’L‘(QO)71'§1),IC22 (0) Z(l) 2(2) F(ﬁ) F1(7V),F(45)) ﬂD( (0)) N D( (3))

where , ,
F1(6y) _ z(3)2 _ xgo) $é3)

3 23 14
I e L

[y 6 (a4 23 o\ 14
_ (xgo) xéd) Z(3))3 _xgo) xés) 5(3)

Since D(0 ) D(xgo)) N D(wés)) N D(z®)), we have that F?Ef)) = 0 if and only if

5 (392 3 (9)2 2
2(3) —x§°) 1753) = 0. This equation, together with Fl(GV) = 0, implies ;L"go) x(23) (x(lo) —

1) =0, and since xgo) 03—y,

— 1 is a unit in (C{{Ll }, we deduce D

This example illustrates the fact that we are looking at jet schemes of a germ of
quasi-ordinary singularity, instead of jet schemes of the whole affine surface. If we
looked at the whole surface there would be other irreducible components that we
do not consider here. This is expectable because the components we consider are
determined by the invariants of the topological type at the origin, so they describe
only what happens in a small neighbourhood of the origin. Actually the other
components that may appear when looking at the whole affine surface, will project
on closed points, different from the origin, of the singular locus.

Lemma 5.18. For m € Zsq and v € oging N [0,m]*> N Ny, we have DY, =
0 Zf and only me > <Va ei(u)flfyi(u)> and O Reg,j’ (m,v) 7é p1U p2.

Proof. Notice that, by definition, D}, # 0 if 0 geg i/ (m,) = p1Up2. Moreover, if
m < (V, €i(1)—1"i(v)), then we will prove in Proposition 5.25 that Dy, is non-empty.
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For the other implication, suppose that m > (v, €;(,)—1%i(v)) and Oreg, j/(mv) 7

p1 U p2. We have by Proposition 5.12 that Fi((ilu)’?(”)%("m € J¥, and by Lemma 5.9
that
i) Rao) S0 . P00
Fi((%ﬁi(ywi(u») _ _cl(y)xg v1) xgm) 2 F&(:,m) 1 "'Fi((i,)’jlz(v)_m =1,

( v nl(u)'Yl(u)))
JrGl(V)

NUO) 20D T§v:(u>> , rG@)
=T gl ) - By 10" DT
where U is a unit in R,,. Now, applying Corollary 5.16 to v and m = (v, €;(,)—1Vi(v)) —
1 we deduce that
j(m,v)—1
nDM)c () DEYT)
i=0
where j(m,v) = i(v) — 1 and M = V ) if jim,v) < gy and M = a:gyl)xéVZ)
otherwise. Then FU™ ™) can pog be zero (note that a( W) = o if i(v) < ¢q1)

i(v),v

and therefore DY, = (. O

DY C V(F4(<V””i’n>))

1<i<j(m,v) (v,vit1—"ni7i) >0

Remark 5.19. For m € Zsg and v € 0ging N [0,m]?> N Ny, if DY, # 0 then
Ve Nj(m,y).

Definition 5.20. Given m € Zso we define the set:
L, = {V € 05ing N [O,m]2 N No | m < <V7 €¢(u)—1%(u)>}
and for0<j<g
LY ={v € L | j(m,v) = j}

Remark 5.21. By Corollary 5.16, if v € ng), the ideal JY, is monomial, more
precisely

m cey Xy sy Lo yenny

Jv — (m§°>,. MOS0 xg'frl),z(OL...7z<[m/nl>).

Lemma 5.22. For m € Z~g, we have that L., ;é 0, and

m XSWIQ U m:*
vEL,,

Proof. Tt follows by Lemma 5.7 and Lemma 5.18, since we have that

U o= U o

V€T SingN[0,m]2NNo VE Ly,
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where the unions are finite, and therefore it is enough to take the Zariski closure.
O

Notation 5.23. For 0 <i < g, we denote k;(v) = (v, vi01 — nyyi), or simply k; if
v is clear in the context.

Remark 5.24. For m € Zsq and v € Ly, we have that kj(m, ) (v) > 0 and
kj’(m,l/)(”) > 0

Now we can prove the irreducibility of the sets Cy},.

Proposition 5.25. For any m € Zso and v € Ly, the set CF, is irreducible and

j(m,v)—1 |:

COdZm(CZ,L) =vi+ve+ Z <V, ’yk+1—nk’yk>—|— :| —<V, nj(m,l/)'}/j(m,z/)>+1
k=0

€j(m.v)

Proof. We will denote along this proof j(m,v) just by j.

The irreducibility follows by Proposition 2.4 and the definition of C¥,. Let us
prove the formula of the codimension.

o If v € LY it follows from Remark 5.21 that C%, = V (J2,,2(), ..., z(m/mD).
The claim about the codimension follows trivially.

o If v € LY with j > 0, then

T = (56(10)7 o ,Igyl_l), x(20)7 o ,l’g/_l), Fi(,ilu,vbi"/z:)+7'¢))0<i<j

for 0 <r <ki(v)ifi<jand 0<r; <[m/e;] —(v,n;v;). It is not a monomial
ideal. We divide the set of non-monomial generators in two sets:
Cl — {F‘(<V7m“ﬁ>)

id }1953', k;>0

C, = { plvmivi)+r)
2 { by }(z',r)eA2
where Ay = {(i,7) [ 1 <i <j, 0<r <k} U{(,r) [0 <r <[] = (vinyv)}-

We claim that V' ((C1)) ~ Z"=, the toric variety defined by the semigroup T'%,
generated by

{%}1§i§j(m,u), k;>0
If v ¢ p1 Upy then any k; > 0 and hence I'Y, =T

m

j(m.v)- Then V({Cy)) is isomorphic
to the monomial variety associated to X (™)) (see Definition 3.5).
To deal with Cy we need to study the elements Fi(i,y’nmwm) with r; > 0 (note

that we do not describe those in Lemma 5.9). For ¢ such that ki(v) > 0 we know
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that FS,”’””W) € J¥ , and we can write, as we did in the proof of Lemma 5.15,

F_( vinivi)) _ (Fi(ﬁ’/flz’))ni +G(_<V-,ni’7i>)(2) +

i,v n%

NO! NO! ) RO e
" (—cixgyl) 1 xéw) 2 Féf;ﬁl» 1 _,.Fi(ﬁlévlzfl)) i1 +G§,<u7 ”’”(1))
where

WV

Gz('fs’m%>)(l) _ Zc&ﬁxgyl)alng)aQFO(W”“»Tl Fi(ﬁléy:yupﬁ)r’_l
with (v, (a1, a2) + 1171 + -+ ri17i-1) = (¥, n47), and
G('wni% an r£C1U1) ' (VQ) F(<V " --F-(f”l’li))”

i,V i

with (v, (a1, a9) +r171 +- - +7%) = (v, niy;) and r; # 0. Then in the second part
of Fi(yg,y’n”m the Fi(ﬁli’l"» does not appear, and, by the definition of the derivation
6, that we can write

FLm _ pL R 4 g

where F(<V %HT) does not appear neither in P nor in Q). Moreover we have that
P #0, or in other words, P ¢ JY,. Indeed, in the proof of Lemma 5.15 we have
showed that

ﬁi(’sj%m%‘)) F((V’% ' G((” nivi) (2) ¢ J

where ﬁ denotes the part of f; depending on f;_4, i.e.,

a0 £y T
o+ E Ca,r1 @2 fol e fily
r; 70

Hence F(<” mtr) - p L p(0+) ¢ v Therefore P ¢ JY, and we deduce that

1—1 SV
Fi(ﬁlﬂjwrr) appears for the first time in F;ﬁ’nm)ﬂ).

Now, using that (v,v;)+r = (v,n;—17vi—1)+ki—1(v)+r, we prove by recurrence
that

(vi+ko+-+ki_1+r) ((vy1)+ko+--+ki—1+7) (viniyi)+r)
(%) @ ) %

appear the first time in F(

Note that this is true also for 2 whenever g; = 0.
Then we have proved that any F(<V miv)Er) o Cs is linear with respect to at
least one of the variables described in ( ), which appears for the first time on this
equation, and with non-zero coefficient over D(m%yl)) N D(xéVQ)), by Corollary 5.16.

Since any of these equations in Cs is linear in a different variable, and, by (x)
we have that it appears for the first time in Cs, we deduce

V(I Fy) e By o) D) 0 D (™)) o Aetm)
where a(m,v) =3(m+ 1) —v; —ve — (v,71) — | As], because

V(I By, FSm07D ) C A3, o ASIHD),

0,v
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Clearly the cardinal of Az is [A2| = >, ) <ic, k,>0(ki—1) +[2]— (v, n;7;). Hence
DY~ (er”n N D)) N D(a (”2))) x AC(mY)

The toric variety Z'= is complete intersection, hence its codimension equals the
cardinal of C;. Therefore

Codim(Cy,) = I[Ci| +v1+ve+ (VM) + Dicicy ksolki — 1) + [2] = (v,my75)

=vitvet Yocic ki (8] = (nngys) +IGI = {1 << | ki >0}

since ko = (v,71). Note that |C1|=[{1 <i <7,k >0} =[{1<i< 4k >0}+1,
since k; > 0 by definition of j(m,v). Then the formula of the codimension follows.

To finish we prove the claim. For 1 < i < j(m,v) with k; > 0 we have by
Proposition 5.12 that Fi(,ff’"m)) € JY . Recall that in the proof of Lemma 5.15 we
proved that whenever k;(v) > 0, we have

RO

()1 (v2)%2 Fé(um>)’“5“,, Fltei )i 1+G((me>)( 1) ¢ J

—Cily Lo 2,

Hence we have
F((V,M) g JrG((v nm))( 2) ¢ J,

i—1 WV

ni a ° a * T(i) l
and since F(¥7) ¢ J¥ and cixgyl) ! xé”Q) : Fo(f,fm» ! F(<V b D7 ¢ Jv

i—1,v
we can write

Uy — clxgul) of? (V2) F((u'n)) ¥ F(<V}%71>)7-Eijl

N
o R S Uy

F((V nivi)) _ FT(_(vlz

7’7

with Uy, Us # 0. Then we deduce that
V({C1)) ~ V(hi)i<i<j(mw), k>0

(i) (l) . .
where h; = w251 x5? 2" w]? ---w,' ', with the relation n;y; = (ozgl),ozg))—i-

(1)7 +- +T1( )1% 1- And V(h i)1<i<j(m,v), ki>0 is isomorphic to the toric variety

Z0m. |
In particular we have the following variation of the codimension of C¥, as m

grows.

Corollary 5.26. For v € L,, such that v € L,,_1 we have that

Codim(Cy, 1) +1 if m =0 mod ej(—1,1)
Codim(Cy,,) =
Codim(C},_4) otherwise
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5.1. Inclusions among the C¥,. The collection of irreducible sets {C¥, | v € L, }
covers (w;l(Xsmg))m o> but in general it is not its decomposition in irreducible
components. We have to study the inclusions

C¥ C C¥ for different v,/ € Ly,

We will describe a set F,,, C L, such that {C% | v € F,} is the set of

irreducible components of ( T (XSWQ))red'

Proposition 5.27. Given m € Zso and v,V € Ly, if V' —V € Opeg j/(m) then
Ol/ C Ol/

m-

Proof. The key point is the following observation. By (14) we deduce that for
l € Zso and v,V € L, with v, <y, for k = 1,2, we have

Fz(,lu = Fz(lu)’ Hz(llz’fu
where Hl(ly)/_u € (xffk) x,(;"“_l) F(‘”)> Note
5 k=1,2,0<5<i,(v,vj+1) <85 <(V',7j+1)

that by definition, equivalently we have that
HO,, € (59,0 a ™ B

vy b )k=172,0Sj<ia(V7’Yj+1>SSj<(V’7’Yj+1> .
When ' — v € 0geg j/(m,), We have that v, < v} for k = 1,2. Then 0geg j/(m) 2
OReg,j’(m,») and then we only have to prove that Jy;, C J”. Let then Fl(ly) e Jy,

and let us prove that it belongs to J,’jl

Notice that j(m,v") < j(m,v). We distinguish the following cases:
o If j(m,v') = j(m,v) wehaveF(l),,H(l) eJy.

LI/—IJ

o If j(m,v") = j(m,v) — 1 we have H() € J” . Moreover Ff” € J,’j{ fori <

w—v v’

j(m,v). Then we have to study Fj((zn,y),u' with (¥, 1 (m.)Vjmw)) <1< (3

€j(m,v)

Note that (denoting j(m,v) simply by j) by definition we have

(v,ej—17;) <m < (v, e;v41)

(s ej—27j-1) <m < (Vs ej17;)
Hence (v,e;_17v;) < le; < 6j[eﬂj] < m < (V,ej_17;), which implies that | <

(v',n;7;) and therefore FY =0

j(m,v),v’

o If j(m,v') < j(m,v)—1, we claim that then o e ; /() = = {(0,0)} and there
is nothing to prove. Indeed, if o reg, j/(m,) = p1Up2 then j'(m,v) < 1or j'(m,v) =
1 =gandy = (1/n,1/n). While if 0peg j/(m,) = p2 then 1 < j'(m,v) < go and
V' =v+(0,a). We have j(m,v) < go+1 but j(m,v') > g1 because (v,v;) = (V',v;)
for 1 <i<g. O
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Definition 5.28. We consider the order relation in Ny, depending on m and de-
noted by <,,, given by

v <pm V' if and only if and V' — v € OReg ji(m,u)-
We define the set Fy, = min<,, Lp,.
Remark 5.29. Notice that if v <,, V' then in particular v; < V] fori=1,2.

It is worth pointing out that the inclusions described in Proposition 5.27,
can be explained by the fact that even though a curve may be in the singular
locus of a quasi-ordinary surface, it may not be part of the singular locus of its
first approximate quasi-ordinary surfaces. And as Proposition 5.14 explains, the
geometry of CV, is only determined by the geometry of one of its semi-roots, for m
small enough. Hence, the jets which project to the singular locus of the surface but
not to the singular locus of the approximate surfaces will not give rise to irreducible
components of the jet schemes for m small enough, and they will be included in
other components.

Now we prove that all possible inclusions among the C¥, are controlled by the
relation defined in Definition 5.28, that is, in the set F,.

Proposition 5.30. Given m € Z~q and v,v' € F,, we have that cv ZCr.

m

Proof. First notice that the claim is clear if v £ v/ (coordinate-wise). Indeed,
suppose that v and v/ are not comparable. Then we can assume that v; < v] and
vy > V. Then, since C% C V(J¥,), and C% C V(J¥}), it follows that

CY ¢ C¥ and C¥, ¢ C¥,.
Let then v, be two different elements of F),, such that v; < v} for i = 1,2. We
will prove that C% ¢ C¥ by showing that Codim(C% ) < Codim(C%,).

Notice that o geg,j/(m,v) 7 p1 U p2, since otherwise (v + o) N Fy, = {v} (recall
that 0 = R%). Then we deduce that j'(m,v) > 0. It is not easy to study the

inequality directly by using the formula in Proposition 5.25, therefore we will prove
by induction on m the inequality

(17) Codim(CZ;) < Codim(Cy,) for (v,egv1) +e1 <m < (v, €iw)-1%iw))-
First step of induction, m = (v, epy1) + e1 and obviously j'(m,v) = 1. We have

that v = (& b—l) with a1 > 1 (because o ey j/(m,v) 7 p1 U p2). To study the set

’n17’n1

(v + o) N F,, we distinguish two cases:

o If by = 0,1 then g1 > 0 and OReg,j/(m,) = p2- Note that (v + (1,0),e071) =
(v,e071) + arer > m and then j(m,v + (1,0)) = 0. By Proposition 5.27 we have
v+(0,1 v v+(1,0)+ (1,7 v+(1,0
Cm( )QC,,,,,andC’m( )+ )QCm( )andhence

v+o)nE, ={v,v+(1,0)}
By Proposition 5.25 we have that
Codim(C¥FA0Y = vy + vy + (1, 71) 4 2 = Codim(CY).
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1,0)) =0
Then by Proposition 5.27 we have Cp, for any (I,r) € o.
0

Moreover (v + (0,1),e0v1) = (v,e071) + €1b1 > m, and then j(v + (0,1),m) =
v+(0,1)+(l,r) C C,u+(0 1)

o If by > 1 then opeg j/(m) = {(0,0)}, and as before j(m,v + (
v+(1,0)+(,r) C Cu+(1,0)

By Proposition 5.27 we have C, Hence

(V+J)ﬁFm = {V3V+(17O)7V+(0a1)}
Again by Proposition 5.25 we have
Codim(C%) = Codim(C%9) = Codim(C%H D)

Suppose that the claim is true for m — 1 and we prove it for m. We distinguish
two cases:

(i) If/ € (v40)NF,,_1, by induction hypothesis, we have that Codim(C¥ ;) <
Codim(C¥,_,). By Corollary 5.26 we know that, passing from m —1 to m, the codi-
mension of Cy, grows if and only if m is divisible by €;(,,—1,,), and it grows by one.
But since v < v/ we have that j(m —1,2) < j(m —1,v) and therefore, if e;(,,—1,,1
divides m, then e;(,,—1,,) divides m, and it follows that Codim(C% ) < Codim(C%,).

(i) If v ¢ (v + o) N Fy—1, there must exists 7 € (v + o) N Fy,—1 such that
U <m-1 V' and ¥ £, /. By induction hypothesis we have that Codim(C¥,_;) <
Codim(C%,_,), and again as in (i), since v < v then j(m,v) > j(m,v) and there-
fore Codim(C”) < Codim(C%,). Now we are going to prove that Codim(CY) <

Codim(C?)). We have two possibilities, either 7 € L, or 7 ¢ Ly,

oIfve Ly, thenj (m—1,7) < ga+1 (because C,

m—1

c Cm 1) and j/(m7§) >
g2 + 1 (because C¥ ¢ C7). Hence m = (U, €gyYgy11) + €951 and

ol (DY )= V(;vgo),...,xggl_l) a:go),.. xéyQ 1) PG N

m,m—1

’Fl(g,nl'u))’ y F(<V ngz+1792+1>) F(<V n92+1792+1>+1)) A D( (V1)>7

go+1,v0 g2+1,v
where
_ _ _ (g2+1) (g2+1) -
(Zingy+17ga+1) _ F((’/ﬁggﬂ)ng?“_ ()% (72)%2 ._.F(<V’”927179271>)+G ~
g2+1,0 T Y o1 T2 g2—1,0 g2+1,
. 1
with ozéngr )> 1, and
(7, "92+1’Yg2+1>+1) (<V7’)’92+1))n92+1 L (Tvge+1)+1) (52)
F92+1 v 92+1F92 v F927 T3 ' H,
where H is a polynomial in the variables
(Dl) (;14’1) (;2) (D2+1) ((5,7192,1’)/!,2,1)) ((D,ng27179271>+1)
H(xl y L1 y Lo 5 To ""’FQZ*L; 7F92,1}; )

Then

(T 1 (Cra)rea = V(I5) 0 D) NV (25)UV (J5) n D) N D5™),

m,m—1
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and it is not difficult to see that (w;}m,l(qﬁ_l))md = C” UC”, where v/ =
v+ (0,a), with
o= 1 ifgo=a
min{ng, 11,kg, +1(¥)}  otherwise

In both cases we have, by Proposition 5.25, that Codim(C% ) = Codim(C?,_,)+1 =
Codim(C7).

o If U ¢ L,,, the reason is that m = (¥, e;3)—17#)) with (V) < g2 + 1, since
j'(m —1,7) < go. We have that (71';,17,L_1(D7”:,_1))7-ed =V/( Z_l,Fi((%’Zm"(gm) N
D(argyl)), where

~ _o@® L G(@) _ (i (D)) - (@)
Fi((;”)’f.‘;”’“@” - xgul) 1 xgw) 2 L (Emhh --~Fi((<§")’f;<3*”“”72>) Z<V)71+Gi(a)7a-
Therefore, by Corollary 5.16, Fi(g)’?(ﬁmm) = 0 implies that 22 = 0 because
(V) —2 < go2. And, as before, if go = g1 + 1 and (V) = g2 + 1 then we have
that v/ = v + (0,a) with o = min{ng, 41, (7, Vg142 — Ng1+17g1+1)}- Otherwise
v =7+ (0,1), and in both cases we have

(W;n,lm—l (Cgm—l))red = C’ryn/

with Codim(C%) = Codim(C” )+ 1. Since ¥ € (v 4 o) N Fp,_1, it follows

that j(m — L,v) > j(m — 1,7) = i(¥) — 1 and by Corollary 5.26 we have that
Codim(C},) = Codim(C¥,_;) + 1, which finishes the proof. O

5.2. Description of the m-jets through the singular locus. Now we can prove
the main theorem of this section.

Theorem 5.31. For m € Zsq the decomposition of 7,,'(Xging) in irreducible
components is given by

(W;Ll(XSing))red: U Czl

vEF,

Proof. The irreducibility of the sets C¥, was proven in Proposition 5.25. And
by Proposition 5.27 and Proposition 5.30 we have that

U= U cu.

vELp, vEF,
Hence the result follows by Lemma 5.22. O

Remark 5.32. When the equisingular dimension is ¢ = 1 (see Definition 3.13),
then g1 = go = g. Moreover we have the following properties for 1 <i<g

(veic1mi) = (v +(0,7),ei-173), forallr € Z

ifveN,; thenv+ (0,7) € N;, forallreZ
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Hence we deduce that for any m € Z~o and v € Ly, we have 0Rreg j/(m,) = p2, and
therefore Fy, = Ly, N py.

The behaviour of the jet schemes is exactly as the plane curve defined by the
Puiseux pairs )\gl),...,)\_gl). In [24] the second author describes the irreducible
components of jets through the origin for plane curves.

The previous remark is the simplest evidence of the fact that the irreducible
components are only affected by the topological type. This is proved in Theorem
5.35.

An alternative way to describe the irreducible components of the jet schemes
through the singular locus is by representing the crucial information in a graph.
To any quasi-ordinary surface singularity we can associate a weighted graph, con-
taining information about the irreducible components of jet schemes and how they
behave under truncation maps.

Definition 5.33. The weighted graph of the jet schemes of X is the leveled weighted
graph T defined as follows:

e for m > 1 we represent every irreducible component of 7, (Xsing) by a
vertex Vi, the sub-index m being the level of the vertex;

o we join the vertices V11 and Vi, if the canonical morphism Ty q1,m in-
duces a morphism between the corresponding irreducible components;

o we weight each vertex by the codimension of the corresponding irreducible
component.

We define ET to be the weighted graph that we obtain from I' by adding to
any vertex of I' the weight given by the embedding dimensions of the corresponding
irreducible component.

Recall that if v € L' the ideal JY, is monomial, and moreover generated by

hyperplane coordinates (see Remark 5.21), then we will say that C¥, is hyperplane
component. Otherwise v € Lg%) for 7 > 0, and we will say that C}, is a lattice
component (because v € N;). Notice that the data of the codimension together
with the embedding dimension permits to distinguish when the vertex corresponds
to a hyperplane or a lattice component. Indeed, given a vertex of the graph, let e
be the embedding dimension and ¢ the codimension, then the vertex corresponds to
a hyperplane component if and only if e + ¢ = 3(m + 1). Therefore we can extract
from ET a subgraph I'" as follows.

Definition 5.34. We define a weighted subgraph T of ET by adding the condition
that we join the vertices V,,, (corresponding to a certain component, say C,’j;) and
Vin—1 (corresponding to C¥,_1) only if
o ifv € Ly—1 with0 < j(m—1,v) < go then v = v+ (0,a) with o minimal
among the elements in F,,.
o ifv € Ly with j(m—1,v) > go then v/ = v.
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The important thing about this new graph I" is that, with the weights, we are
able to detect when we pass from a hyperplane component at level m to a lattice
component at level m + 1, as we also do in the graph ET', but now we can follow
this component in a unique path in the graph as m grows. This will be useful to
prove the following result.

Theorem 5.35. The graph I determines and it is determined by the topological
type of the singularity.

Proof. The graph is determined by the semigroup, and therefore, by [15], by
the topological type. Now we prove the converse.

We prove first that we can read the number of characteristic exponents in
the graph, in the following way. Any vertex V, on the graph comes with the
codimension ¢(V;,,) and the embedding dimension e(V,,). Take an infinite branch
(which we know that must correspond to v € Ny), and consider the finite part that
starts at

mo = max {m | V,,—1 is a hyperplane component and V,, is a lattice component},
and ends at

m1 =min {r | ¢(V;,) = ¢(Vip—1) + 1 for all m > r}.
In the case Xging = Z1 U Zy (which is the case with two components at level

m = 1) we have to make sure that moreover the component corresponds to v 63,
and this can be done by choosing a component which projects to both Z; and Zs
(it always exists for m big enough). Note that then we deduce mo = (v, epy1) and
my = (V,eg-17), and we can read e, ...,es_1 by using Corollary 5.26. Indeed,
going backwards we look for the biggest m’ such that ¢(V,,/) = ¢(Vin,) — 1. Then
n =mo—m'. Now, going from level mg to m;, we know that the codimension grows
by one exactly every e; steps at first, after every es steps, and so on. Sincee; > eg >
-+ > e4 = 1 we can read these numbers on the graph. Notice that equivalently we
get n1,...,ng, and in particular we have g, the number of characteristic exponents.

Suppose now that the number of generators of the semigroups is the same, say
g. We will prove by induction on g that the graphs corresponding to different sets
of generators, are different. We denote the vertices at level m by Vi, (¢(Vin), e(Vin)).
The case g = 1 was treated in Theorem 4.21.

Now, suppose it is true for g — 1 characteristic exponents, and we will prove it
for g. From Proposition 5.14 we deduce that is sufficient to prove that the graphs
associated to the sets {y1,...,79-1,7} and {7v1,...,74-1,7,} are different, since
otherwise it holds by induction hypothesis. Moreover, since we read the integers

ni,...,ng in the graph, we assume that n/g = ng. Asin the case g = 1, by looking
at the singular locus (which is seen at m = 1) we just have to consider the case
'y§2) = 7;(2) = n—lq and the case 75(,2),7;(2) > n% In the first case ’yél) # 'y;(l) and

%'(2) = %{(2) = 0 for 1 < i < g— 1. Therefore the graphs are the same till we

get to level m = min {ny (v, v,), ng(v, 72,)}, where v = (11,0) € 0ging N Ng—1 with
vy smallest with this property. Since (v,v,) # (v,7;) the graphs must differ at
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some moment. Finally, when v # +/ with 7_5,2),7;(2) > n%], again by Proposition
5.14, the graphs must be the same for {v1,...,7,} and {y1,...,75-1,75}, till the
last semi-root, that is, f, starts playing a role in the definition of a component,
say CV. Since (v,74) # (v,7,) we will see the difference on the graphs at level

m = min {ng<V7'Vg>’ng<V77g>}' -

5.3. Log-canonical threshold. In [29], Mustata gave a formula of the log-canonical
threshold in terms of the codimension of jet schemes, which in our setting can be
stated as
Codim(X,,)
m+1
Then, as an application to Theorem 5.31, we can recover, for the case of
surfaces, the result in [8].

(18) let(f) = ming,>o

Corollary 5.36. The log-canonical threshold of a quasi-ordinary surface singular-
ity is given by:

1A ) 11
60)\311) Zf )\1 # (Ea ?1)
leto (X, A%) = 1 ifh\ = (7 5) andg =1
_mOEND) ey o (L 1) gpd g > 1
e1(n1(1+A8)—1) ni’ ny

Moreover, the components that contribute to the log canonical threshold are

Cé/'/750“/1>—1 fn# (7%17 7%1) org=1

2’%6”2%1 otherwise
where v = (1,0) € Ny if y1 # (n%, i) and v = (1,0) € Ny otherwise.
Proof. The case A\ = (n%, n%) and g = 1 behaves as an A,-singularity, and

then lct(f) = 1. For the rest of the cases, by Corollary 5.26, the codimension of
a component grows faster as m grows, for bigger j(m,v). Therefore, the smaller
codimension will be attached for v € F,, Nmin<, {v € Ly, | Ogeg,j/(mp) = p1Up2},

and more concretely for v € L,(mo) N F,, whenever LSS) NF, # 0. If g = 0,
since a; > by, we deduce that the minimal codimension among the elements in
FpMmine, {v € L | Ogeg,j/(mw) = p1Up2} is attached for v of the form v = (I,0),

while if gz > 0 then F,,, "min<, {v € Ly, | Oreg,j/(mw) = p1 U p2} consists of just
a point of the form v = (I,0).
We want to minimize not just the codimension, but the quotient %ﬁx’").

That is, to find the biggest m such that v still belongs to F,, N minc, {v €

>=m

Ly | OReg.j/(mwy) = p1 U p2}. Then, when A\ # ( L 1) this is attached for

ny’ ny

m = (v,epy1) — 1 such that v € L,,41 with j'(m,v) = 0 and j(m,v) > 0. Then
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m = ((1,0),egv1)—1 and Codim(C},,) = I+[%*]+1, and since j(m,v) > 0, (1,0) € Ny
and therefore Codim(C¥,) =1 + 14+, which implies that Codim(cy) _ arn

ny? m+1 naiy

If v1 = (&, 1) and ¢ > 1, what happens is that when m = (v, epy;) there

is no subdivisioln 0% the component and ogeg,1 = p1 U p2. If we denote the second
exponent by 72 = (322, n’?sz ), we look for v of the form (I,0) such that m + 1 =
(v,e172) with v € Na. Then Codim(Cy) = I+ (v,m) + [2F] — (o) +1 =

e
@2

Codim(cy) U+l i —eost)

I+ (v,71) + (v,72 — n171), and therefore ] = - =
ning
It e —1 1452 . — . .
LSire = —=2. This coincides with the statement since Ay = (-2 —
€2n7 €15y ninz
ni—1 B2 _ my—1
n1 ’ ning n1 ) O

We now deduce a family of examples whose log canonical threshold can not
be computed by a monomial valuation.

Corollary 5.37. Let X be a quasi-ordinary surface singularity with g > 1 char-
acteristic exponents, and such that \; = (=, L), Then lct(X,A3) can not be

ni ? ni
contributed by monomial valuations in any variables.

Proof. Tt follows from Corollary 5.36 that lct(X, A3) is contributed by Clleoni)
for v as is made precise in the above statement. This is equivalent to say that the
valuation

Cllz1,x2,2]] — N

Clerrr—1

h — ord¢(hon)

where 7 is the generic point of (\11?1/3,81’72>71)_1(C<VI/,61’)/2>71) and
A S A

is the map induced by truncation. Note that v can take all the values described in
Corollary 5.36 but since (1™ —z{")302) — (i3 one of the defining equations of

v ny __ ny _
C<V76172>*1’ then VC<VV1€1’YQ>*1 (Z 1'13?2) > nlvczjwel‘m)*l (Z) and VC?V=€172>*1 (Z
x122) > Ve (x1)+Vor (x2). Therefore Vo is not a monomial

X (viepvg)—1 (v,e1yg)—1 (viepvg)—1
valuation. O

5.4. Examples. We finish by looking at some examples, to illustrate once more
the arguments we use in proving the description of (’/T;Ll(X Si"g))re ;4 in irreducible

components.

Example 5.38. Let X be the q.0. surface defined by f = (2% — x329)% — 21023,
whose generators of the semigroup are v1 = (3, %) and v2 = (%, %) We have that
g1 =0 and g2 = 1. The singular locus is

XSing:{Z:$1:O}U{Z:1‘2:O}
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and then oging = 0 \ {(0,0)}. Then
_ 0 0
(771 I(XSing))red = V(:Ug ),z(o)) U V(xé )72(0))
or, described with our notation, Iy = {(1,0),(0,1)}. Note that 0gingN[0,1]>NNy =
{(1? O>7 (07 1)7 <1a 1)}; and since
oY =V (af”,2f”, 2%),
it 1s not an irreducible component, because it is contained in both V(a:go), z(o)) and
V(xéo), Z(O)) .
Let us lift the component C{O’l) to higher levels. If v = (0,1),
1w 0 @ 2
(ﬂﬁ,i(cl ))'r'ed = V(J?; ),l‘é )7 Z(O)vFl(, ))

v

where Fl(QU) = x§0>3x§2). We can check that (0,1) € Fs and that it is indeed
an irreducible component of (ng(Xsmg))Ted.

To illustrate typical behavior of this case we have to lift the components much
higher.

Straightforwardly it can be checked that

(720" (Xsing)) g = Cia” U C3y™” U Cy™ L CRp®
as Theorem 5.31 claims. Let us lift the component
058’6) = V(a:g]), e ,xé‘r’)7 20 (1) () F1(0y)>
We have that, if v = (0,6),
71—2_11,20(050) = V(ng)v e 7xg5)7 Z(O)v Z(l)v 2(2)7 F1(,61/)7 F1(,71/))

where 5
F) =207 — g0

)

. 2 3
Flm 22(3)2(4) — 3x§1) xgz)xé‘g) - xgl) mgl)

WV

This is not irreducible, since it decomposes as
V@, e, o0 o) o@ 0 0 0 6y
WV (2,20, 2V 2P, 20,20, 22, 1O FD) A 2V £ 0}
We can check that V(x§0)7:rgl),xgo),xgl)7x§2)7 202 2 2)) does not give rise

to an irreducible component, since it is contained in Cﬁ’m and (2,2) € Fyy.

Example 5.39. Consider the quasi-ordinary surface f = ((22 —a3)? — xI:U%)Q —

W23 (22 — 23). We draw the graph in Figure 4. The semigroup is generated by the

Ty T2
vectors y1 = (2,0), v2 = (%,2) and 5 = (2,12). We have that g1 = g» = 1. The

singular locus is reducible, of the form
Xging:{Z:I’l :O}U{I2:Z27I?:O}:Z1UZ2.
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Then 0ging = Rzzo \ {0} and oreg,1 = P2, OReg,2 = OReg,3 = {(0,0)}.
The set F,, describing the irreducible components is the following, for some
m:
F,={(1,0),(0,1)}, for1<m<6

F,={(1,0),(0,2)}, for6<m <12
Fiz ={(2,0),(0,2)}

Fi3 ={(2,0),(0,3)}

Fig ={(2,0),(0,4)}

Fy = {(2,0),(0,4),(0,5)}

Fog = {(Sa 0)7 (27 O)a (07 4)3 (07 5)}
and the result can be checked by lifting the components Z1 and Zs of the singular

locus to level m as the following graph shows (we did not draw the weights of the
vertices for clearness).

Now we give some explanations to illustrate how Proposition 5.27 works.

Form =1, we have Lgo) ={(1,0),(1,1)}, Lgl) ={(0,1)} and ng) = ng) = 0.
By Proposition 5.27 C’fl’l) - C’{l’o), since §'(1,(1,0)) =0 and oReg,0 = p1 U p2.

At level m = 6 we have Léo) = {v € [0,6]> N Ny | v1 # 0}, Lél) =0 and
L ={(0,1) | 2< 1o <6} and LY = L® = 0. Note that j'(6,(1,0)) =0, hence
OReg,j'(6,(1,0)) = P1 U p2 and by Proposition 5.27 C§ C 061’0) for any v € Léo).
Moreover j'(6,(0,2)) = 1, hence 0peg j/(6,(0,2)) = p2 and by Proposition 5.27 C§ C
Cé0’2) for any v € Lél).

Note how at this level v = (0,1) does no longer give rise to an irreducible
component, since ((0,1),e1v2) =6 and (0,1) ¢ No. Then we have that (0,2) € Fy

and the vertex associated with C’éo’l) and the one associated with CéO’Q) are joined
in the graph T".
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